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The optimal data selection model proposed by Oaksford and Chater (1994) successfully formal-
ized Wason’s selection task (Wason, 1966). The model, however, involved some questionable
assumptions and was also not sufficient as a model of the task because it could not provide quanti-
tative predictions of the card selection frequencies. In this paper, the model was revised to provide
quantitative fits to the data. The model can predict the selection frequencies of cards based on a
selection tendency function (STF), or conversely, it enables the estimation of subjective probabil-
ities from data. Past experimental data were first re-analysed based on the model. In Experiment
1, the superiority of the revised model was shown. However, when the relationship between ante-
cedent and consequent was forced to deviate from the biconditional form, the model was not sup-
ported. In Experiment 2, it was shown that sufficient emphasis on probabilistic information can
affect participants’ performance. A detailed experimental method to sort participants by proba-
bilistic strategies was introduced. Here, the model was supported by a subgroup of participants
who used the probabilistic strategy. Finally, the results were discussed from the viewpoint of
adaptive rationality.

The four-card selection task was devised by Wason (1966) more than 30 years ago. Since then
innumerable experiments and many theories explaining its various results have been pub-
lished. In the original version of the selection task, an experimenter presents participants with
a rule, “If there is a vowel on one side (p), then there is an even number on the other side (q)”,
and four cards showing an “E” (p), a “K” (not-p, usually expressed as Øp), a “4” (q), and a “7”
(Øq). Each card has a letter on one side and a number on the other side. Participants are asked
which cards they would need to turn over in order to determine whether the rule is true or
false. The logically correct response is “E and 7” (p and Øq), which is rarely made.
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Until recently, it was not clearly understood that there are two aspects to this task: a logical
aspect concerning the rule and a decision-making aspect concerning the selection of cards.
This duality makes it difficult both for participants to solve the task and for researchers to ana-
lyse it. Kirby (1994) brought the latter aspect to light by analysing the task using the notion of
subjective expected utility. Oaksford and Chater (1994) successfully formalized the duality of
this task in terms of Bayesian hypothesis testing (e.g., Earman, 1992; Howson & Urbach,
1989/1993). This computational model of human reasoning in the selection task is based on
the concept of rational analysis (Anderson, 1990) and is called the optimal data selection (ODS)
model. The model drew many criticisms (Almor & Sloman, 1996; Evans & Over, 1996a, b;
Green & Over, 1998; Green, Over, & Pyne, 1997; Klauer, 1999; Laming, 1996; Oberauer,
Wilhelm, & Diaz, 1999), and some of these are still under debate. However, it is notable that
the theory allows us to account for various experimental results on the selection task in a single
theoretical framework. Theoretical revision and expansion, as well as experimental studies,
have followed the initial proposals (e.g., Chater & Oaksford, 1999; Oaksford & Chater, 1996,
1998; Oaksford, Chater, & Grainger, 1999; Oaksford, Chater, & Larkin, 2000).

The ODS model still has some problematic features. First, a questionable assumption is
made in formalizing prior hypotheses in terms of probabilities. Correcting this problem (see
later) changes the model’s predictions, especially on Øp card selections.

Second, the ODS model does not make quantitative predictions. In general, any model of
the selection task should explain the differences in card selection frequencies. The ODS
model predicts these differences based on the expected information gain of turning each card,
which is calculated from the subjective probabilities of the antecedent (p) and the consequent
(q) of the rule (“if p then q”). Though the expected information gains and the proportions of
cards selected are continuous values, the ODS model assumes the relationship to be merely
monotonic, and it predicts only the order of card selection frequencies. Analysis of the order of
card selection frequencies is necessary, but not sufficient.

Third, there are some data that do not seem to be explained by the ODS model. In Kirby’s
(1994) experiment, it was observed that Øp selections increased as the subjective probability of
the antecedent, P(p), increased, whereas the ODS model only predicts that the selection fre-
quency of the Øp card should always be the lowest. A similar tendency was also observed in
Experiment 2 of Oaksford et al. (1999). In that study, the selection frequency of the Øp card
became comparatively high (.42) when the probability of p was high (.83). Likewise, the results
of some experiments (e.g., Oaksford et al., 1999; Oberauer et al., 1999), which examined the
effects of P(p) and P(q), did not uniformly verify the ODS model’s predictions. Moreover,
Evans and Over (1996b) pointed out that the ODS model cannot explain the result of Pollard
and Evans (1983), which was intended to manipulate participants’ prior beliefs. In contrast to
the prediction of the ODS model that prior belief has very little effect, the results showed that
Øq selection increased when participants had low belief in the rule.

Finally, the ODS model does not deal with individual differences. It seems unlikely that all
participants solve the selection task in the same way (see, Stanovich, 1999; Stanovich & West,
1998).

In this paper, the ODS model is revised as follows. (1) The questionable assumption about
the formalization of hypotheses is corrected. This improves the fit of the model to the data,
especially for Øp selections. (2) A method of parameter estimation using a “selection tendency
function” is incorporated into the model. This enables the model to account quantitatively for
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the results on an arbitrary task by any group of participants. (3) A detailed method to distin-
guish and to classify individual differences or strategies is proposed. This is applied in two
experiments investigating the adequacy of the revised model. The new quantitative model is
called the Quantitative Optical Data Selection or QODS model.

BAYESIAN ANALYSIS OF THE SELECTION TASK
RE-EXAMINED

Formalizing Wason’s selection task in terms of probability enables participants’ behaviour on
the task to be modelled using Bayesian hypothesis testing. According to the Bayesian
approach, rules (in the selection task) are considered as hypotheses to be tested, and a hypothe-
sis can be tested by comparing it to alternative hypotheses. As with the ODS model, it is
assumed that two hypotheses are involved in the selection task. One hypothesis, r, is the rule
“if p then q” (e.g., a person believes that “if it is a raven [p], then it is black [q]”), corresponding
to material implication p ® q in standard logic. In terms of probability, it is represented by the
joint probability distribution shown in Table 1 (left). In this table, x0 and y0 represent P(p½r)
and P(q½r), or the probability of the antecedent (i.e., being a raven) given this hypothesis (i.e.,
in the case that the belief is true) and the probability of the consequent (i.e., being black) given
this hypothesis, respectively. Here, it is presupposed that the probability of the consequent is
greater than the probability of the antecedent:

x y0 0£ 1

As the ODS model assumed, the alternative hypothesis to which r is compared is assumed
to be “p and q are independent”—that is, r. This hypothesis is expressed by the joint probabil-
ity distribution shown in Table 1 (right). In this table, x1 and y1 denote P(p½r) and P(q½r),
respectively. As Evans and Over (1996b) pointed out, the alternative hypothesis to r may be a
problematic issue. However, as discussed later, the independence hypothesis, r, is the simplest
and most sufficient hypothesis for explaining the data.

In the Bayesian framework, data update prior beliefs, which are represented by the joint
probability distributions r and r. For Bayesian updating, these probability distributions
should be unified, with each weighted by the degree of prior belief, represented by a subjective
probability. Here, the relationships between corresponding probabilities of p and q in r and r
should be specified—that is, between x0 and x1, and between y0 and y1. The simplest
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TABLE 1
Joint probability distribution for the rule “If

p then q” (r) and “p and q are
independent” (r)

r r
—————— ——————
q ¬q q ¬q

p x0 0 x1y1 x1y1

¬p y0 – x0 1 – y0 x1y1 x1y1

Note: x0 = P(p|r), y0 = P(q|r); x1 = P(p|r), y1 =
P(q|r), x1 = 1 – x1, y1 = 1 – y1.



assumptions are made, that all probabilities of p in all hypotheses (r and r in this case) are the
same, and all probabilities of q are the same:

x x x

y y y
0 1

0 1

= =
= =

2

Here x and y represent P(p) and P(q), respectively. Because x and y are considered independ-
ent variables in our model, these assumptions are natural and appropriate.

The ODS model, however, assumes y0 ¹ y1. In this model, the probability of q in the
absence of p is assumed to be the same in both hypotheses—that is to say, P(q½r, p) = P(q½r, p),
or y0 – x0 = (1 – x1)y1, and this assumption implies y0 ¹ y1. It is important to note that this
assumption entails a counterintuitive consequence. From Bayes theorem,

P r q
P q r
P q

P r
y

y
P r( | )

( | )

( )
( ) ( )= = 0

According to the ODS model, P r q P r( | ) ( )¹ is derived because y y0 ¹ . As a result, with regard
to entropies (i.e., uncertainties in the truth) of the rule (R = {r, r}), it can be shown that

H R q H R( | ) ( )¹

This means that the entropy of R is affected by whether or not the q card is presented. In other
words, one would obtain some information about the truth or falsity of the rule only by looking
at a q card face up on the desk. If it is felt that this consequence is strange, then it must be con-
cluded that the ODS model’s assumption, y0 ¹ y1, is not appropriate.1

MODELLING THE TENDENCY TO SELECT A CARD

Generally, turning over a card provides some amount of information about the truth or falsity
of the hypothesis. If one turns over the p card, and the flip side is ¬q then this datum refutes the
hypothesis “r: p ® q” and reduces uncertainty completely. On the other hand, if the flip side is
q, then this datum supports hypothesis r and will increase the degree of belief in hypothesis r.
This means that uncertainty is reduced by some amount.

It is assumed that one is more likely to turn over a card when the expected amount of uncer-
tainty reduction is increased. It is also assumed that this relationship is not only monotonically
increasing as the ODS model supposed, but is expressed by a specific function as discussed
later on.

Scaled information measure

In terms of probability, the degree of uncertainty reduction is defined as the difference in
entropies before and after obtaining the information. For example, the expected reduction of
uncertainty about the validity of the rule that is obtained by turning over the vowel card is
defined as the difference of the entropies—the entropy when the vowel card is facing upwards
and the entropy when an even or an odd number is exposed on the other side of the vowel card.
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For formalization, let p, p, q, and q now denote a vowel, a consonant, an even number, and an
odd number, respectively. In addition, let P = {p, p} and Q = {q, q}. Therefore, the expecta-
tion of uncertainty reduction by turning the vowel card can be written as H(R|p) – H(R|Q, p).
This is equal to the expected information gain and is known to be equal to the mutual information
(see, e.g., Cover & Thomas, 1991) of the rules and the events on the numerical side condi-
tioned on the vowel card, I(Q; R|p) (see Appendix). It is abbreviated to I(p), and the expected
information gain by turning over a card x Î P È Q is defined as

I x H R x H R Y x( ) ( | ) ( | , )= - 3

where Y = P, Q and Y x (e.g., when x is p or p, Y is Q). The equations to calculate each I(x)
using P(p), P(q), and P(r) are shown in the Appendix.

As the ODS model suggests, the choice of a card in the selection task should be regarded as
competitive. Suppose one card (e.g., the p card) is extremely prominent in comparison with
other cards, then from the theoretical information point of view it will have a greater chance of
being selected. On the other hand, if all four cards are indistinguishable from each other, then
every card will have a certain chance of being chosen. Incorporating this view from the ODS
model, the expected information gain of card x, I(x), is scaled by the sum of the expected infor-
mation gains of all cards. This is abbreviated to scaled information measure. It is indicated by
Is(x) and defined as

Is x
I x

I xix P Qi

( )
( )

( )
=

Î Èå
4

Here, the index i runs over the four cards. As a technical issue, dividing I(x) for each card by
the sum (not the mean as in ODS) of these values makes each scaled value vary between 0 to 1
and makes it easier to interpret.

When scaling information, the ODS model requires an additional operation in order to
account for the participant’s selection of the ¬p card: adding a “small” fixed constant (.10) to
all the I(x)s. We cannot find any satisfactory reason why such a fixed constant should be
added. Moreover, this value is not at all small. For example, when P(p) = P(q) = .10, and P(r) =
.50, where the rarity assumption (Oaksford & Chater, 1994) is made, the expected information
gain of the p, ¬p, q, and ¬q cards, respectively, is .85, .00, .21, and .05.2 In this standard case,
comparing the value for the ¬q card (.05) or the q card (.21), .10 is not a small value. In sum,
adding any fixed constant is not justifiable.

The ODS model predicts that the selection frequency of the ¬p card is always the lowest.
On the other hand, the QODS model predicts that the ¬p card will be selected with compara-
tively high frequency where P(p) and P(q) are both high. For example, when P(p) = .75 and
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2The scaled expected information gain (EIG) values that appeared in Table 17.2–17.5 in Oaksford and Chater
(1998, pp. 381–389) and in Table 1 in Klauer (1999, p. 217) are miscalculated. They assumed that the posterior belief
in the hypothesis should be P r P q r p P q pk j k i j i( ) ( | , )/ ( | )for pi (i.e., p and ¬p cards), and P r P p r q P p qk i k j i j( ) ( | , )/ ( | )
for qj (i.e., q and ¬q cards), respectively, where { } { , }p p pi = , { } { , }q q qj = , and { } { , }r r rk = (M. Oaksford, personal
communication, October 1999; in thankful acknowledgement to Mike Oaksford for providing a computer program on
which their data were based). However, the posterior probability of the hypothesis given both pi and qj (qj on the
reverse side of pi, or pi on the reverse side of qj), should be defined by P r p qk i j( | , ). In fact, under the assumption
described by Equation 2 in the text, these three equations on the posterior agree with each other.



P(q) = .77 (see later for the source of these values), Is(p) (=.48) is greater than Is(p) (=.11) and
Is(q) (=.07).

Although the ODS model yields Is(x) for each card as a continuous value, Oaksford and
Chater (1994) analysed only the ordering of the card selection frequencies. Oaksford, Chater,
Grainger, and Larkin (1997) argued, however, that if the difference between the scaled infor-
mation measures (they called it the scaled expected information gain, denoted by SE[Ig(x)]) is
small, then discriminability is lessened, and card selection becomes ambiguous as a result (p.
444). The logical implication of this statement is that if there exists a clear difference in the fre-
quencies of card selection among the four cards, the scaled information measured Is(x) of these
cards would differ correspondingly.

For instance, where P(p) = .20 and P(q) = .21 (where rarity is maintained), the scaled infor-
mation measures, Is(x), of the p, ¬p, q, and ¬q cards, is computed as .60, .07, .18, and .15,
respectively, by the ODS model,3 but as .47, .07, .38, and .08, respectively, by the QODS
model. With regard to the ODS model, it can be seen that not only is the Is(q) value still low,
but also that the difference between Is(q) and Is(q) is quite small, as argued by Oaksford et al.
(1997, pp. 443–444) in the context of the reduced array selection task (RAST; Johnson-Laird
& Wason, 1970). Although it is true that the order of Is(x) values calculated by the ODS model
does coincide with the experimental data, this model cannot predict card selection frequency.
The difference in selection rates between q card and ¬q card is usually high; the former is
known to show quite high selection rates in standard abstract tasks, and the latter is one of the
logically correct solutions that is rarely selected. Neglecting this fact and analysing only selec-
tion orders is not sufficient. The QODS model manipulates quantities of information and
enables the prediction of card selection frequencies. The method and some assumptions are
detailed in the next section.

Modelling alternative hypotheses

There are assumed to be only two artificial hypotheses in the ODS model: the dependence
hypothesis r, “if p then q”, where P(q|r, p) = 1; and the independence hypothesis r, “p and q are
independent”, where P(q|r, p) = P(q|r). One criticism of the theory was that these assump-
tions are not general enough (Evans & Over, 1996a), and some possibilities for extension have
been shown, such as the incompleteness of the relationship of dependency (Chater &
Oaksford, 1999; Green & Over, 1997; Oaksford & Chater, 1998; Oaksford et al., 2000; Over &
Jessop, 1998), or a plurality of alternative hypotheses (Green & Over, 1997; Green et al., 1997).
Here, we examine how these extensions strengthen the model and how they change its
behaviour.

As Oaksford and Chater (1998) argued, we rarely use rules that admit no exceptions in our
everyday life. Using u = P(q|r, p), a constraint on the probabilistic relationship between p and
q, which allows exceptions, can be expressed as y0 £ u £ 1, as opposed to u = 1, which rejects
exceptions. Therefore, an index of conditional dependency that indicates the strength of the
dependence of q upon p can be defined by
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c
u y

y
=

-
-

0

01

where c = 1 means complete dependency, and c = 0 means complete independency. The joint
probability distribution of the complete dependency rule shown in Table 1 (left) can be
extended and redefined as r0 shown in Table 2 (left), which is essentially the same analyses as
Oaksford et al. (2000). The QODS model can be constructed with the hypothesis of Table 2
(left) instead of Table 1 (left).

As an alternative hypothesis to the rule “if p then q”, one can consider the opposite rule “if p
then ¬q”. This state of affairs can be realized by a model involving three hypotheses: r0, r1, and
r2. Here r0 and r1 correspond to r and r, respectively, and r2 corresponds to the material implica-
tion, p ® ¬q. The joint probability distribution of the rule r2 is shown in Table 2 (right). Here
is it presupposed that the probability of the antecedent, x2 = P(p|r2), plus the probability of the
consequent, y2 = P(q|r2), is less than or equal to 1:

x y2 2 1+ £

One can then consider another version of the QODS model that involves hypotheses R = {r0,
r1, r2}.

Not only can many kinds of model be considered to represent the selection task, but the
manner in which prior probabilities are assigned is controversial in Bayesian statistics (e.g.,
Berger, 1985; Earman, 1992). Fortunately, however, as shown in Table 3, priors in the QODS
model generally have very weak effects on changing each Is(x). In this table, scaled informa-
tion measures for three kinds of combination of subjective probabilities, P(p), P(q), and vari-
ous types of prior, are shown. The kinds of combination of P(p) and P(q) are L–L, L–H, and
H–H (L: LOW, H: HIGH); H–L is rejected because this violates the model’s presupposition
P(p) £ P(q) derived from Equations 1 and 2. Here, it is assumed that LOW is .23 for p and .25
for q because these are the values that provide the maximum likelihood when estimating the
selection tendency function (STF) detailed in the next section; HIGH is .75 for p and .77 for q
because .75 = 1 – .25 and .77 = 1 – .23. There are three types of hypothesis compounds in
Table 3: complete dependency (r) versus independence (r), incomplete dependency (r0, c ¹ 1)
versus independence (r1), and the competition between complete dependency (r0, c = 1), inde-
pendence (r1), and complete opposite dependency (r2). On the whole, except for the combina-
tion H–H with the low prior, P(r0) = .10 or .33, in the three-hypothesis model, little effect can
be observed. In general, it is clear that these different hypothesis compounds have little effect
on Is(x).
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TABLE 2
Joint probability distribution for the extended
rule “If p then USUALLY q” (r0) and another

alternative rule “If p then NOT q” (r2)

r0 r2
———————– ————————
q ¬q q ¬q

p x0u x0u 0 x2
¬p y0 – x0u y0 – x0u y2 1 – x2 – y2

Note: x0 = P(p|r0), y0 = P(q|r0), u = P(q|r0, p), u = 1 –
u; x2 = P(p|r2), y2 = P(q|r2).



Thus, it can be concluded that assuming the complete dependency versus independence
model and that P(r) = .50 is reasonable and sufficient. In all subsequent analyses, these are
assumed except when explicitly noted.

Selection tendency function (STF)

In the QODS model, it is assumed that the more informative a card will be when turned over,
the more likely it is that it will be selected. For instance, if the scaled information measure of a
card is extremely prominent (e.g., .80) compared with others, then its probability of being
selected may be high (e.g., .95). On the other hand, even when a card provides almost no infor-
mation, it may have a certain probability of being chosen. The relation between the informa-
tiveness of a card and the tendency for it to be turned over is defined by a selection tendency
function (STF), f.

If the subjective probabilities P(p), P(q), and P(r) in a Wason’s selection task with the rule
“if p and q”, are given, the scaled information measure Is(x) can be calculated for each card x
from Equations 3 and 4. Each value of Is(x) can then be matched against a card selection ten-
dency (i.e., a probability of being selected), T(x), with the STF. The card selection tendency
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TABLE 3
Values of the scaled information measure for various prior and subjective probabilities

Type P(p) P(q) P(r0) c P(r1) P(r2) Is(p) Is(p) Is(q) Is(q)

L–L .23 .25 .80 1.00 .20 – .52 .07 .29 .13
.50 1.00 .50 – .49 .07 .32 .11
.50 0.80 .50 – .47 .07 .36 .09
.50 0.50 .50 – .47 .06 .39 .08
.20 1.00 .80 – .49 .07 .34 .10
.80 – .10 .10 .51 .06 .31 .12
.33 – .33 .33 .49 .06 .37 .08
.10 – .10 .80 .50 .04 .41 .05

L–H .23 .77 .80 1.00 .20 – .49 .01 .01 .49
.50 1.00 .50 – .48 .02 .02 .48
.50 0.80 .50 – .48 .02 .02 .48
.50 0.50 .50 – .47 .03 .03 .47
.20 1.00 .80 – .48 .02 .02 .48
.80 – .10 .10 .45 .05 .05 .45
.33 – .33 .33 .43 .07 .07 .43
.10 – .10 .80 .41 .09 .09 .41

H–H .75 .77 .80 1.00 .20 – .13 .29 .07 .52
.50 1.00 .50 – .11 .32 .07 .49
.50 0.80 .50 – .09 .36 .07 .47
.50 0.50 .50 – .08 .39 .06 .47
.20 1.00 .80 – .10 .34 .07 .49
.80 – .10 .10 .13 .33 .10 .45
.33 – .33 .33 .21 .26 .18 .35
.10 – .10 .80 .27 .21 .25 .27



T(x) will be realized as R(x), which is the card selection ratio (see later) for the target group of
participants. In other words, T(x) is an estimate of R(x).

How to estimate the subjective probabilities P(p) and P(q) from the observed card selection
rates can now be considered. If R(x) = d/N is given, let d be the observed number of selections
of card x, and let N be the total number of participants. Because R(x) is described by a bino-
mial distribution B(N, T), the likelihood function D, which is the vector of ds, is

like D
N

d
T x T x

ii
i

d
i

N di i( ) ( ) [ ( )]= æ
è
ç

ö
ø
÷ -Õ -1 5

To maximize this function, consider its natural logarithm (omitting the constant):

L D d T x N d T xi i i i
ii

( ) log ( ) ( )log[ ( )]= + - -åå 1 6

The pair of values of P(p) and P(q) that maximize Equation 5 will maximize Equation 6. These
values are called estimated values of P(p) and P(q), or maximum likelihood estimates (MLEs) for
the data R(x).

To obtain estimates, the STF, f, which maps Is(x) onto T(x) with a monotonic relationship,
must be specified. The range of T(x) should be 0 £ T(x) £ 1 because T(x) is a probability, but
T = 0 and T = 1 are not desirable in view of the estimation process. From these requirements, f
is assumed to be a logistic function:

T x f Is x
e Z x

( ) [ ( )]
( )

= =
+ -

1

1
7

where Z(x) = a + bIs(x), which is called the logit of T(x). In this function, parameter b defines
the inclination of the slope, which provides the contrast between any two points with different
scaled information measures, and parameter a defines the position of the curve, which
provides sensitivity to the information.

Parameter estimation of the STF

Using experimental data for R(x), the parameters a and b of the STF in Equation 7 can be esti-
mated by the maximum likelihood method, under the assumption that a and b are independent
of P(p), P(q), and P(r). The experimental data used in the estimation procedure were chosen
from studies reporting individual card selection frequencies, which were cited for comparison
in Oaksford and Chater (1994). The data were carefully screened because ideally the values of
P(p) and P(q) should be the same for each experiment. Any studies with violation instructions,
with deontic rules, with nonstudent participants, and with nonstandard tasks (e.g., with think-
ing aloud) were rejected so that the experimental conditions would yield homogeneous data.4

Selected data are shown in the upper part of Table 4.
Equation 6 is a nonlinear function with four variables, a, b, P(p), and P(q). To maximize it

globally, a numerical approach based on the Newton–Raphson method with a grid refinement
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4Strictly speaking, the STF differs for each experiment because different participant groups bring different
knowledge or background beliefs to the task; furthermore, it differs for each individual. However, it is still useful to
group various data for the selection task by estimating an STF by carefully averaging possible differences.
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algorithm was executed by a computer program (Mathematica 4.0, 1999; Global Optimization
3.0, 1998). The STF was determined with the parameters a = –2.43 and b = 9.27 as shown in
Figure 1. In this case, P(p) = .23 and P(q) = .25.

META-ANALYSIS USING THE MODEL

The estimated parameters of the STF, a and b, are regarded as semi-fixed in general, whereas
the estimated subjective probabilities, P(p) and P(q), can differ in every experiment as the
probabilistic information varies. The purpose of this section is to evaluate how well the model
fits the data on the selection task by seeking the best fitting values of P(p) and P(q). These
values can then be assessed for whether they conform to those predicted.

Method

Given the subjective probabilities P(p) and P(q), the expected information gain I(x) and the scaled
information measure Is(x) of each of the four cards can be calculated. From this, the selection tendency
T(x) that corresponds to the selection frequency of each card is derived using the STF f(x) (see Figure 2).
Conversely, participants’ potential subjective probabilities can be estimated from the experimental data

1252 HATTORI

Figure 1. The selection tendency function (STF).

Figure 2. Three-dimensional surface plots of the selection tendencies of card p and ¬p (left) and cards q and ¬q
(right) as functions of P(p) and P(q) when P(r) = .50.



on selection frequencies.5 To estimate P(p) and P(q), the same method as that for estimating the STF
described earlier can be used. The only difference is on the number of parameters, because a and b, have
already been determined. The purpose is to find the values of P(p) and P(q) that provide the global maxi-
mum of Equation 6 given R(x) for each of the four cards, which is regarded as T(x). Using this method,
the latent subjective probabilities P(p) and P(q)  of some experiments in the literature were estimated.

The target data were restricted to nondeontic abstract tasks. The reason for selecting nondeontic tasks
is that in a deontic task, people can also use some other kind of measure than the amount of information
(e.g., the subjective utility proposed by Kirby, 1994, and Oaksford & Chater, 1994). The reason for the
restriction to abstract tasks is to compare the subsequent experiments where probabilistic information is
experimentally varied. The target tasks were abstract standard selection tasks (which were used to iden-
tify the STF), negations paradigm abstract tasks (see later), and tasks with probabilistic information as
used in Kirby (1994), which are called probabilistic tasks in this paper.

Results and discussion

All of the results of the estimations are shown in Table 4, and a scatterplot is presented in
Figure 3. Table 4 reveals good fits to the data. The model could only be rejected for one experi-
ment, assuming a P < .01 criterion (.05 is regarded as unreasonably large for model rejection,
Read & Cressie, 1988). The results are described according to the kind of task.

Standard abstract task

The results of estimating P(p), P(q) for the experimental data using standard abstract selec-
tion tasks are plotted by circles (single or double) in Figure 3. All of these points are distributed
within the area (approximately) P(p) < .4 and P(q) < .4. This result supports the rarity
assumption of Oaksford and Chater (1994).

The estimated values all lie in the vicinity of the line P(q) = P(p). This result corresponds to
the participants’ tendency to a biconditional interpretation. If the rule given is biconditional
(i.e., the rule is “if and only if p then q”), y0 – x0 in Table 1 (left) is always equal to zero; there-
fore, x = y, or P(p) = P(q). In the neighbourhood of the line P(q) = P(p), the conditional rule is
interpreted more biconditionally. The results mean that participants in all of these studies
tend to interpret the conditional rule biconditionally. It has been argued that people have a
tendency to interpret a conditional sentence as a biconditional one (e.g., Geis & Zwicky, 1971;
Taplin, 1971), except for some cases of relatively familiar categorical relationships (e.g., “If it
is a raven, then it is black”). Generally speaking, when there is no information of P(p) and P(q)
it is assumed that the properties that figure on the conditionals are bidirectional. This is
labelled the biconditionality assumption.

As Platt and Griggs (1995) pointed out, rules in the abstract selection task can be classified
into two types: Categorical rules (e.g., “If a card has a vowel on one side, then it has an even
number on the other side”), and specific-instance rules (e.g., “If there is an A on one side of the
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one-shot action, nor can we repeat the same experimental task with the same person. Therefore, it is difficult to iden-
tify one person’s subjective probabilities. A value estimated for a group of participants can be regarded as a kind of
average over all the individuals in the group.



card then there is a 4 on the other side”). The two kinds of rule were distinguished by the
results of the estimation procedure. There were 5 experiments using a categorical rule and 15
experiments using an instance rule. In Figure 3, experiments with a categorical rule are plotted
by double circles, and those with an instance rule are plotted by single circles. The results for
instance rules are spread over a comparatively wide range, .03 £ P(p) £ .35, but the results for
categorical rules are gathered within a comparatively small area, .22 £ P(p) £ .36. This differ-
ence may be explained as follows. In both cases, no probabilistic information was given in the
tasks. Especially in the task with an instance rule, however, the values of subjective probabili-
ties will be highly dependent on each participant’s comprehension of the focal set (Cheng &
Novick, 1991, 1992) or the contrast class (Oaksford & Stenning, 1992) for the target materials,
which would vary according to participants.
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Figure 3. Estimated values of subjective probability P(p) and P(q) for various kinds of abstract selection task. Each
figure beside the points corresponds to the sequential number in Table 4.



Negations paradigm abstract task

Evans and Lynch (1973) showed that the presence or absence of negated constituents in a
rule affects a participant’s performance in the selection task. There are four possible patterns
for rule in the negations paradigm in the selection task: affirmative antecedent and affirmative
consequent (AA); affirmative antecedent and negative consequent (AN); negative antecedent
and affirmative consequent (NA); and negative antecedent and negative consequent (NN).
The corresponding four cards are referred to as true antecedent (TA), false antecedent (FA),
true consequent (TC), and false consequent (FC). Although it might cause some
complications as a rule contains negatives, it is assumed here that any negated constitutions
contained in the rule are included in the corresponding propositions. In other words, the TA,
FA, TC, and FC cards are referred to as the p, ¬p, q, and ¬q cards, respectively, regardless of
any negated constituents in the rule.

Generally speaking, when the consequent contains a negative constituent (i.e., AN and
NN), the number of participants who select the ¬q (logically correct) card increases. Oaksford
and Chater (1994) explained these results based on the ODS model and the rarity assumption.
If it is assumed that the default values of P(p) and P(q) are low, the probabilities of negation of p
and q that are described as 1 – P(p) and 1 – P(q) must be high. When P(q) is high (the negative is
included in q itself in this case), the ODS model predicts a high selection rate of the ¬q card.

Here the probabilities of the antecedent and the consequent in the negations paradigm
selection tasks are identified. First, the plotted datum points for the AN rule indicate a wide
distribution area in Figure 3. Many of them have low P(p) and high P(q) values. Second, data
for the NN rule indicate comparatively high values of P(p) and P(q) (both are generally in the
range between .3 and .6). Third, the data for the NA rule show comparatively low P(p) and
P(q), and the difference in these values is low. As the results for the NA rule and the standard
abstract tasks have common characteristics, they can hardly be distinguished from one
another.

This result clearly indicates that negated constituents raise the subjective probability of the
events that contain them, and the result is consistent with the rarity assumption. For the NA
rule, because a combination of high P(p) and low P(q) is incompatible with the constraint of
Equation 1, P(p) was suppressed to about the default level. In consequence, the results were
similar to those of the standard AA type abstract task (Oaksford & Chater, 1994).

Examining the subjective probabilities that contain a negated constituent (ignoring the dis-
tinction between antecedent and consequent), and ignoring NA, they vary within the range
from .30 to .95 (M = .45, SD = .14, N = 25). On the other hand, the range of affirmative events
was .03–.38 (M = .22, SD = .11, N = 49). Now, let x be the probability of an affirmative event,
and let x¢ be the probability of the negation of the event. From this result, the relationship of
these probabilities would be expressed x + x¢ < 1. This means that the subjective probabilities
of negative events are usually lower than those calculated by ordinary probability theory. This
property is called superadditiveness . The reason and meaning of the property are discussed later
in the section General Discussion.

Probabilistic abstract task

Kirby (1994) proposed a theory of the selection task based on subjective utility theory. His
model predicted that as P(p) increases, the selection frequency of the ¬q card will increase, and
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his experiments provided evidence that this is the case. In his experiments, information on
P(p) was given by the ratio of the numbers of cards. The base rate of mistakes violating the rule
was also given. Although the base rate is closely related to P(r), it may not be regarded as P(r)
itself, because of the ambiguity in interpretation of the instructions given in his experiment as
pointed out by Over and Evans (1994). Therefore, P(p) and P(q) were estimated with several
values of P(r). As P(r) increased from .50 to .99, in the small P(p) condition, the estimated
values of P(p) varied from .38 to .36, and P(q) varied from .41 to .37; whereas in the large P(p)
condition, P(p) varied from .53 to .56, and P(q) varied from .56 to .56. All of these ranges are
small, and so it is clear that the effect of P(r) is very small.

Estimated values of P(p) in the large P(p) condition in Kirby (1994) are obviously higher
than those for the small P(p) condition. This result is consistent with the probabilistic infor-
mation given in the instructions, P(p) = 1/1001 in the small P(p) condition, and P(p) =
1000/1001 in the large P(p) condition (note that there is a critical argument on this topic in
Evans & Over, 1996a). However, estimates of P(p) and P(q) were not so extreme, although the
relation P(p) P(q) was maintained. This result is compatible with the concept of the weight-
ing function in prospect theory (Kahneman & Tversky, 1979). In this theory, it is proposed that
very low probabilities are overweighed, and for all the probabilities, the decision weight satis-
fies superadditiveness .

Furthermore, although there was no explicit description of P(q) at all in the tasks, the rela-
tion P(p) ~_ P(q) in all the estimates can be seen. Thus the default relationship between P(p) and
P(q) would appear to be P(p) ~ - P(q). In other words, the conditional rule is interpreted
biconditionally according to the biconditionality assumption, at least when no explicit infor-
mation is given.

Evans and Over (1996b) pointed out that the ODS model cannot explain Kirby’s (1994)
data showing an increase in selections of ¬p cards when P(p) was high. The QODS model,
however, can explain these data. According to the model, as P(p) increases, the scaled informa-
tion measure for ¬p rises, and this causes an increment of selection frequency of the ¬p card.

Evans and Over (1996a) also pointed out that Oaksford and Chater (1994) calibrated P(r)
for Kirby’s (1994) data without adequate reasons. They claim it is impossible to identify P(r)
based on the instructions because of procedural faults. However, as shown earlier, P(r) is pow-
erless to affect the models behaviour. Therefore, this criticism is not very important from a
theoretical point of view.

Summary

The results of the meta-analysis using the QODS model raised three important issues.
First, the experimental data from the standard tasks and the negations paradigm tasks sup-
ported the rarity assumption. The estimates of P(p) and P(q) for affirmative propositions indi-
cated low values, and negations, which flip the truth value, raised these estimates. Second, the
results of the negation-free tasks (i.e., standard and probabilistic tasks), and the NA tasks that
violate the probabilistic constraints of QODS, supported the biconditionality assumption.
Each pair of estimates for P(p) and P(q) indicated similar values.

However, and third, when the task situation violated either rarity or biconditionality the
estimated values of P(p) and P(q) were more moderate than expected. In the probabilistic tasks,
the estimates were not as extreme (e.g., .99 or higher) as those given in the task instruction, and
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the estimates for negated propositions were higher but not sufficiently so: The sum of the
affirmed and the negated estimates was less than 1.00. This superadditiveness is characteristic
of the p-function in prospect theory (Kahneman & Tversky, 1979).

EXPERIMENT 1

The most conspicuous quantitative difference between the ODS model and the QODS model
is in the prediction of the selection frequency of the ¬p card. The ODS model predicts that the
selection frequency of the ¬p card is always the lowest. On the other hand, the QODS model
predicts that when both P(p) and P(q) are high, the ¬p card will be selected more than p and q
(see Figure 2). In Kirby’s (1994) Experiments 1, 2, and 3, as P(p) increased, the selection fre-
quency of ¬p increased. Experiment 1 was designed to investigate how P(p) influences the
selection frequency of the ¬p card.

The second purpose of this experiment was to validate the QODS model directly. There
seem to be few studies on the abstract version of the selection task that explore the effect of
probability on card selection frequencies by systematic variation of the probabilities of the
antecedent and the consequent, P(p) and P(q). It is known that facilitation—that is, helping
participants select the logically correct cards (p and ¬q)—is not a simple matter, especially in
the abstract selection task (Platt & Griggs, 1993, 1995). Both models predict that the logical
choice will be increased if P(p) is low and P(q) is high (see Figure 2). In an attempt to deter-
mine whether the probabilistic information provides facilitation in the abstract selection task,
this probability condition, P(p) = LOW and P(q) = HIGH, was included in the experiment.

Although some experiments (e.g., Oaksford et al., 1999; Oberauer et al., 1999) have manip-
ulated P(p) and P(q), they did not uniformly support the ODS model. The main cause of this
may be individual differences among participants (Stanovich & West, 1998). It is obvious that
all participants do not perform the task in the same way. However, in a long history of research
on human reasoning using Wason’s selection task, few studies have analysed participants’
strategies. In this experiment, a new method of analysing participants’ individual differences
from the probabilistic point of view was introduced. The third purpose of this experiment was
therefore to examine the validity of this method.

Method

Participants and design

A total of 136 undergraduate students of Ritsumeikan University participated in this experiment. Of
these, 3 reported having seen the selection tasks before. The results given here are for the remaining 133
participants. Participants were randomly assigned to one of these groups: 45 of the participants were
allocated to the low P(p) and high P(q) condition (Condition L–H), 47 were allocated to the high P(p) and
high P(q) condition (Condition H–H), and 41 were allocated to the no probabilistic information or
control condition (Condition C).

The tasks were printed in a booklet, and the experiment was administered to the participants as a
group. Participants were instructed to perform the tasks according to page sequence and never in the
reverse order.
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Materials and procedure

To begin, participants read the following instructions (in the case of Condition L–H). This task is
called the probabilistic selection task.

There are two sets of Hanafuda6 cards: one set has a reverse side that is black; the other set has a red
reverse side. Now we are going to create a new set of Hanafuda cards by drawing cards from each
set. Mr Taniyama was elected to do this work and he claims the following rule was kept while com-
piling the new set of Hanafuda cards: “If the back of the card is red, then it is a trash card”. Exami-
nation of the new Hanafuda card set that Taniyama has made shows that there are only a few red
cards, and all the others are black; most of the cards are trash cards, and very few are scoring cards.

Arrayed on the desk are 4 cards drawn from the new Hanafuda card set that Taniyama has
made. Which card, or cards, need to be turned over in order to determine whether his rule is true
or false? Mark the card(s) which you think that need to be turned over. (Red is indicated by grey.)

Next, the following question was asked in order to test the participant’s card preference order. This
task is called the preference order task.

When the number of cards you can turn over is restricted to only one, which card would you
choose to turn over? Write the number 1 on the card. Next, write the number 2 on the card that
you would want to turn over second if the number of cards is restricted to two. In the same way,
supposing the number is three or four, write a number on each card. You can use the same number
for one as for another only if you cannot put them in order.

In Condition H–H, the rule used was: “If the back of the card is black, then it is a trash card”. Proba-
bilistic information on the card colour, P(p), was replaced by the sentence: “For the most part cards are
black, and the remaining few are red”. In Condition C the rule was given without any probabilistic infor-
mation on the card colour: “If the back of the card is red, then it is a scoring card”.

Subsequently, so that the sensitivity of the participants to the probabilistic information in the task
could be determined, they were asked to rate, on a 5-point scale, the extent to which they considered each
of the following:

1. Did you give consideration to the number of red cards or trash cards in your card selection?
2. Did you give consideration to the certainty of the rule that Mr Taniyama proposed?

The 5-point answer scale ranged from did not consider at all (1), to considered very much (5).
Furthermore, the participants were asked to evaluate the subjective probabilities, P(p), P(q), and P(r)

as percentages (which is called the probability evaluation task). It is important that the probability of the
rule “if p then q”, or P(r), should not be confused with that of q given p, or P(q|p). The minimize this pos-
sible confusion an imaginary person, named Taniyama, was introduced, who claimed the conditional
rule to be true. The participants were required to evaluate their degree of confidence in him as an evalua-
tion of P(r).

Finally, participants performed the original type of abstract selection task involving a vowel and an
even number.
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Results and discussion

The proportion of cards selected in each type of task and participant’s strategy group, which
are described later, are given in Table 5. With regard to the preference order task, a weighted
scoring for each card in order of preference was calculated and analysed. The results were,
however, very similar to those of the probabilistic selection task, so a report of the preference
order data is omitted here.

Original abstract task. The purpose of this task was to check the homogeneity of partici-
pants between conditions. Although some effects of transfer from the probabilistic task might
exist, a number of studies have failed to discover any transfer effects on the abstract selection
task (e.g., Johnson-Laird, Legrenzi, & Legrenzi, 1972; Wason & Shapiro, 1971).

The differences in selection frequencies of each card under the three conditions were not
statistically significant, with c2(2, N = 132) = 0.81, 0.71, 1.60, and 0.42, for the p, ¬p, q, and ¬q
cards, respectively, ps > .05 (see Table 5).

Differences between conditions. In Condition L–H, both models predict that the p and ¬q
cards will be selected frequently. The result, however, indicates that R(p) = .64 and R(q) = .42,
which were, especially for the ¬q card, contrary to both models’ predictions.

In Condition H–H, the ODS model predicted a high selection frequency for the p and ¬q
cards, whereas the QODS model predicted a high selection frequency for the ¬q and ¬p cards.
The result shows R(p) = .72, R(q) = .70, and R(p) = .42. The ODS model therefore seemed to
be supported by these data.

In Condition C, the card selection pattern of the probabilistic task resembles that of the
original abstract task. For each card, there was no significant difference between the card
selection frequencies: c2(2, N = 82) = 0.46, 1.30, 0.54, and 2.40, for the p, ¬p, q, and ¬q cards,
respectively (ps > .05). This result means that without explicit probabilistic information, the
default (low) value of probability is adopted, regardless of task materials.

Grouping participants by strategies. Some participants may think probabilistically in per-
forming the probabilistic task, but others may not. Participants who adopt a probabilistic
strategy must be sensitive to information on the probability or frequency of cards, as evaluated
in Question 1. Therefore, the rating for Question 1 is called the probability-consciousness index
(PI). In order to sort participants by their strategy from a probabilistic point of view, all partic-
ipants were categorized according to their PI: Participants who rated four or more were
labelled the probability-conscious (PC) group, and the others were called the non-PC group.

With regard to the non-PC group, the patterns of selection frequencies were similar
between Conditions L–H and H–H (see Table 5): Both had an enhanced p card selection fre-
quency. No significant differences were detected between the proportions of cards selected,
c2(1, N = 56) = 0.83, 0.65, 0.10, and 3.19, for the p, ¬p, q, and ¬q cards, respectively (ps > .05).
The subjective probabilities P(p) and P(q) for the non-PC group were estimated using the
method introduced in the previous section: P(p) = .43 and P(q) = .44 for Condition L–H, and
P(p) = .42 and P(q) = .47 for Condition H–H. These values were similar between conditions.
Logically speaking, if we ignore the probabilistic information, Conditions L–H and H–H are
the same. These results indicate that the non-PC participants made little use of probabilistic
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information in the task. Using or not using particular information can be seen as a kind of strat-
egy. The non-PC group can be seen to adopting the strategy of ignoring probability
information.

The card selection proportions for the PC group in Condition H–H are R(p) = .53, R(p) =
.67, R(q) = .47, and R(q) = .80, as shown in Table 5. This result (i.e., high ¬q and ¬p) coincides
with the QODS model’s prediction, but not with that of the ODS model. The estimated
values of P(p) and P(q) were .59 and .60, respectively. These are high values and are consistent
with the probabilistic information given in the task.

In Condition L–H, the card selection pattern of the PC group does not coincide with the
predictions of either the QODS model or the ODS model. The estimated values were P(p) =
.44, P(q) = .44. This result may be explained as follows. In terms of probability, a logical rule
“r: p ® q” is represented by a joint probability distribution shown in Table 1 (left), which is a
case of Table 2 (left) with u = P(q|r0, p) = 1 as described earlier, and v = P(p|r, q) can take any
arbitrary value, 0 £ v £ 1. As a special case, if v = 1 then the rule satisfies the biconditional rela-
tionship “r: p « q”. So, from a probabilistic viewpoint, a nearness to a biconditional relation-
ship can be defined. As v increases, “p ® q” can be regarded as coming closer to “p « q”. In
Condition L–H, where P(p) = LOW and P(q) = HIGH, v should be low according to standard
probability theory. As a logical consequence the relationship differs from a biconditional—
that is, it violates the biconditionality assumption. In other words, in Condition L–H, there
was an incompatibility between the biconditionality assumption and the probabilistic infor-
mation given in the task. Such a conflict may explain why the expected results were not
obtained in this condition.

Evaluated values of probabilities. Because the PC group’s results are very similar to those
of all participants for the evaluated values of P(p), P(q), and P(r), the following analyses were
only performed for the whole group of participants.

The mean evaluated values of P(p) and P(q) were .28 and .60 in Condition L–H, .70 and .68
in Condition H–H, and .42 and .40 in Condition C, respectively. Only in Condition L–H was
the difference between P(p) and P(q) significant, t(43) = 6.15, p < .01. The difference in the
P(q) value between Conditions L–H and H–H was not statistically significant, t(89) = 1.67,
p = .10. Thus, at least superficially, participants properly comprehended the probabilistic
information that was given in the task. However, the evaluated values disagreed with the esti-
mated values of these probabilities in Condition L–H. This may be caused by the difference
between a participant’s superficial, or explicit, understanding of given information and the
way information is used by the processes responsible for card selection.

The rating of P(r) varied according to the conditions: .45, .66, and .52, in Conditions L–H,
H–H, and C, respectively, F(2, 129) = 5.96, p < .01. Multiple comparisons by Tukey’s HSD
procedure indicated that only the difference between L–H and H–H was statistically signifi-
cant (p < .05). This result is explained by the biconditionality assumption. People may not
only have a tendency to interpret a conditional biconditionally, they may also believe it to be
the norm. Under this assumption, the believability of the information that describes a
nonbiconditional relationship will be lower than the believability of the information that
describes a biconditional one. Only Condition L–H was a nonbiconditional situation, so the
low value of P(r) in Condition L–H can be explained.
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Statistical independence of card selections. Some studies have argued for statistical associa-
tions between card selections (Evans, 1977; Oaksford & Chater, 1994; Pollard, 1985). Because
the QODS model separately predicts the probability of each card to be selected, if the model is
correct, the statistical independence of card selections should be observed. Each of the four
cards can be considered to be a binary categorical variable: to select or not to select. Therefore,
the results of an experiment are presented as a four-dimensional 2 ´ 2 ´ 2 ´ 2 contingency
table. Note that it can be misleading, or at least insufficient, to analyse only the marginal tables
of a multi-way table (see, e.g., Bishop, Fienberg, & Holland, 1975), which is exactly what was
done in the previously mentioned studies. The experimental data for each combination of con-
dition, task, and group were analysed using the log-linear model of independence, forbidding
any interaction terms. For the PC group, the model fitted the data for Condition H–H, G2(11,
N = 15) = 15.96, p = .14, and for Condition C, G2(11, N = 8) = 11.10, p = .43, whereas an infe-
rior fit was shown in Condition L–H, G2(11, N = 21) = 31.8, p < .01. On the other hand, for the
non-PC group, the model fitted none of the data well, G2(11, N = 24) = 25.01, p < .01, G2 (11,
N = 32) = 24.33, p = .01, G2(11, N = 33) = 26.82, p < .01, in Conditions L–H, H–H, and C,
respectively. These results indicate that the participants in the PC group performed as pre-
dicted in conditions other than L–H, but none of the non-PC group’s results can be explained
by the QODS model. In Experiment 2, the possible factors responsible for the results in the L–
H condition were investigated.

EXPERIMENT 2

In the L–H condition in Experiment 1, the main reason for the lack of an effect of probabilistic
information was the conflict between the participants’ tendency to a biconditional interpreta-
tion, P p P q( )~ ( )- , and the probabilistic information provided in the task, P p( ) P q( ). This
poses the question: Can probabilities be manipulated in a way that overcomes the tendency to a
biconditional interpretation? The biconditional interpretation may be suppressed by empha-
sizing the probabilistic information in the task. To aid participants’ comprehension of a
nonbiconditional relationship, it might be necessary not only to present the information that
P(p) = LOW, P(q) = HIGH, but also to cite some supplementary information, for example,
that v = P(p|r, q) 1. This experiment tested this hypothesis.

Clarifying the meaning (i.e., nonbiconditionality) of the rule by textual manipulations may
increase ¬q card selections, though not dramatically (Bracewell, 1974, and Mosconi &
D’Urso, 1974, described in Green, 1995a, b; Hoch & Tschirgi, 1985; Margolis, 1987; Platt &
Griggs, 1993). Explaining the rule in natural language is related to emphasizing probabilistic
information in understanding the nonbiconditional relationship. The effectiveness of explain-
ing that the converse of the rule is not true when presented with probabilistic information was
therefore also investigated.

When the biconditionality assumption is broken, different strategies for solving the task
may become salient. Therefore, some new indexes were introduced to probe participants’
strategies, and the relation between their strategies and task performance was also
investigated.
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Method

Participants and design

The participants were 85 undergraduates at Ritsumeikan University. Three were later excluded
from the analyses, one who had prior experience of the selection task and two who provided invalid
responses in the answer sheet. The students were randomly assigned to one of two groups: 40 of the par-
ticipants were allocated to the rule explication condition (Condition E, described later); and 42 participants
were allocated to a control condition (Condition C).

As in Experiment 1, the experiment was conducted in groups and the tasks were printed in a booklet.
The instructions stated that the task was to be performed according to page sequence and never in the
reverse order.

Materials and procedure

The tasks were similar to those of Experiment 1. They differed only in the following points. First, the
evaluation task for the probabilities P(p), P(q), and P(r) was performed at the start. This change was
intended to call the participants’ attention more to the probabilistic information and to promote compre-
hension of the nonbiconditional relationship suggested in the rule.

Second, an additional questionnaire on the evaluation of the probability of p given q when the hypo-
thesis is true, that is, v P p r q= ( | , ), was introduced: “Now suppose you are drawing some trash cards from
a new deck of Hanafuda cards. What is the ratio of red cards to black cards when the rule Taniyama claims
is true?” The ordinary selection task was conducted after this questionnaire.

Third, in addition to Questions 1 and 2 as in Experiment 1, participants were given the following
5-point scale question:

3. Did you consider that the converse of Taniyama’s rule was not always obeyed (i.e., the back of a
trash card is not always red)?

The intention here was to test participants’ sensitivity to the nonbiconditionality of the rule.
In the explication condition (Condition E), the following sentence was inserted in the instruction

directly after the rule (with no additional sentence in Condition C).

What must be noticed is that the converse of the rule is not always obeyed. That is to say, the back
of a trash card is not necessarily red, and a card with a reverse side that is black may be a trash card
or a scoring card.

Results and discussion

The effect of rule explication. In Condition E, the proportions of card selection were R(p) =
.88, R(p) = .38, R(q) = .58, and R(q) = .55; in Condition C, they were R(p) = .69, R(p) = .21,
R(q) = .62, and R(q) = .57. Except for the p card, none of the differences between correspond-
ing proportions of the two conditions were statistically significant, c2(1, N = 82) = 4.07, 2.56,
0.17, and 0.04, respectively (p = .04 for the p card, and ps > .05 for the others). Although it
could be expected that the selection frequency of the ¬q card would rise in Condition E, this
was not observed. These results indicate that verbal explication of a conditional (i.e.,
nonbiconditional) relationship only had a weak effect on changing card selection frequency.
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Original task. In Condition E, the proportions of cards selected were R(p) = .88, R(p) =
.28, R(q) = .68, and R(q) = .28; and in Condition C, they were R(p) = .98, R(p) = .29, R(q) =
.83, and R(q) = .21. No significant differences was detected between the conditions, c2(1, N =
82) = 3.09, 0.01, 2.79, and 0.41, respectively (ps > .05). As a whole, the proportions were R(p)
= .93, R(p) = .28, R(q) = .76, and R(q) = .24. In Experiment 1, they were R(p) = .88, R(p) = .39,
R(q) = .69, and R(q) = .37. The differences of corresponding proportions between experi-
ments were not significant for all cards, c2(2, N = 214) = 1.27, 2.51, 1.10, and 3.75, respec-
tively (ps > .05). These results corroborate the homogeneity of participants between the
conditions and between experiments.

Indexes on strategies and grouping participants. As was explained in the Results and Dis-
cussion section of Experiment 1, the value of v, which participants evaluated in the probability
evaluation task, can be regarded as an indicator of the similarity of a conditional to the
biconditional. Therefore, a biconditional interpretation index, BI, for each participant was
defined as his or her evaluation of v, which reflects the subjective estimate that the converse of
the rule is true.

From Bayes’ theorem and the QODS model’s assumption,

P q P q r
P p r

P p r q
P p

P p r q
( ) ( | )

( | )
( | , )

( )
( | , )

= = =

If a participant was perfectly Bayesian, his or her evaluated subjective probabilities would sat-
isfy this relationship. Because all these probabilities, that is, P(p), P(q), and v = P(p|r, q), were
collected in the probability evaluation task, we can examine whether or not such an ideal rela-
tion is maintained for each participant. We define a probabilistic deviation index, DI, as

P q
P p

v
( )

( )-

which indicates how well the participant maintains consistency with ordinary probability
theory.

Here, let us consider the participants who satisfied low BI and low DI. These participants
can be considered to have little tendency towards a biconditional interpretation and to be
probabilistically consistent.7 Such a group of participants may employ a common probabilistic
strategy. The high/low values of the indexes were defined in relation to the medians (BI: 20;
DI: 40). The group of participants who had a low BI and a low DI were labelled the consistent
conditional interpretation (CC) group.8 PI, introduced in Experiment 1, can be looked on as an
index that is based on a participant’s self-knowledge (i.e., explicit cognition). On the other
hand, DI is an index that indicates a participant’s consistency in probabilistic calculation and is
based on implicit cognition. There appeared to be no dependency between high/low PI
(³4/£3) and high/low DI, c2(1, N = 82) = 0.157, p = .69.
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based on ordinary probability theory, the relationship between p and q should be nonbiconditional.

8Participants with a value of P(p) higher than .50 and those with a P(q) lower than .50 were also excluded from the
CC group because these values suggest an inadequate comprehension of probability.



The number of CC participants differed significantly between conditions: 16/40 (Con-
dition E) vs. 8/42 (Condition C), c2(1, N = 82) = 4.35, p < .05. This suggests that the expli-
cation by natural language triggered a consistent interpretation of conditionals for some
participants.

Evaluated values of probabilities. The mean ratings of P(p) and P(q) were .18 and .67,
respectively. As in Experiment 1, the difference was significant, t(81) = 12.2, p < .01.
However, although the probabilistic information given in the task was reflected in the mean
rating, they do not coincide with the estimated values. The instructions stated that P(q) =
HIGH, whereas the estimates indicated moderate values (.51 for the CC group, which is not so
high as the evaluated value, .67). This result is discussed further in the General Discussion
section.

Card selection frequencies. The proportions of cards selected in each group are shown in
Table 5. Across all participants the proportion of ¬q card selections was relatively high (.56)
compared with the result of the original task (.24), but it was lower than that for the q card (.60).
Although this result differed from the results of Experiment 1, it did not coincide with the
QODS model’s  predictions.

However, the CC group showed a significantly higher frequency of ¬q card selections in
the probabilistic task than did participants in the non-CC group: R(q) = .83 and .45, respec-
tively, c2(1, N = 82) = 10.22 and p < .01. The estimates for the CC group were P(p) = .43 and
P(q) = .51, which reflect (to a certain extent) the effect of the probabilistic information given in
the task.

It is also apparent that in the original task (which does not contain probabilistic informa-
tion) no clear differences in card selections were observed between the CC group and the non-
CC group:c2(1, N = 82) = 0.05, 0.02, 3.16, and 1.10, for the p, ¬p, q, and ¬q cards, respectively
(ps > .05). In addition, the estimates of the original task for these groups were similar: P(p) =
.25 and P(q) = .27 for the CC group; P(p) = .24 and P(q) = .25 for the non-CC group. From
these observations, it follows that in a selection task with an effective probabilistic manipula-
tion, the CC group participants demonstrated the selection tendency that was predicted by the
model. On the other hand, in a task without any probabilistic information, they made a similar
selection as that made by the non-CC group, based on the rarity assumption (Oaksford &
Chater, 1994).

Raising P(p) and P(q) will increase the chance of giving the logically correct answer,
namely, selecting only the p and ¬q cards. On the probabilistic task, the CC group demon-
strated a higher proportion correct (.33) than did the non-CC group (.16), whereas on the
original task, this difference disappeared (.00 and .07, respectively).

In this respect, the results for the PC group closely resemble those for the CC group. For
the PC group, the estimates in the probabilistic task were P(p) = .37 and P(q) = .44, and those
for the original task were P(p) = .26 and P(q) = .28. The proportion correct was .30 in the
probabilistic task and .07 in the original task. Therefore, the QODS model successfully pre-
dicts the card selection tendency of participants who are consistent from a probabilistic point
of view or who are conscious of probability.
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Statistical independence of card selection. To examine the statistical independence of card
selections, selection patterns were analysed using the log-linear model. The independence
model fitted both the CC, G2(11, N = 27) = 14.4, p = .42, and the PC group data, G2(11, N =
27) = 14.4, p = .21, but fitted neither the non-CC, G2(11, N = 58) = 35.4, p < .01, nor the non-
PC group data, G2(11, N = 55) = 24.2, p = .01. These results confirm that the performance of
the CC and PC group participants is well predicted by the QODS model.

GENERAL DISCUSSION

A new computational model of the selection task with an indicative conditional rule (“if p then
q”) was presented in this article. The model was a quantitative revision of the ODS model that
permitted estimation of the subjective probabilities of the antecedent (p) and the consequent
(q) of the rule from experimental data. Meta-analyses using the model revealed that, generally,
P(p) and P(q) were approximately equal in the standard abstract task, which was called the
biconditionality assumption. Experiments 1 and 2 were run to test the superiority of the new
model and to examine the validity of new methods to sort participants by their strategies.

The results of the experiments showed that the probability information given in a task is
not sufficient to change responses in the selection task for all participants. In Experiment 2,
the CC group’s performance was as the model predicts, and the opposite to the results in the
L–H condition of Experiment 1. This reveals that participants’ performance can be affected
by how well they comprehend the task situation, which can be controlled by emphasizing
probabilistic information as in Experiment 2 (on the topic of encoding of the problem informa-
tion, see Green, 1995b; Platt & Griggs, 1993, 1995). Comprehension may also be affected by
familiarity with the task scenario or by how believable it is.

In a recent paper, Feeney and Handley (2000) introduced another indirect method to affect
participants’ comprehension of the probabilistic situation of the task. In addition to a standard
conditional rule “if p1 then q”, they presented a second rule “if p2 then q”. In their experiments,
because the probabilistic information itself was not manipulated at all, it is unclear whether,
and how, the relations between P(p1) and P(q) changed when presented with or without the
second rule. Their results, however, can still be explained by the QODS model, as opposed to
the ODS model. Typically, two cases can be considered: In the two-rule condition, compared
with the one-rule case, (1) the participants lowered P(p1), and (2) they heightened P(q). In
either case, selection tendencies of the q card and ¬p card are decreased monotonically as
shown in Figure 2, agreeing with Experiments 2 and 3 in Feeney and Handley (2000).

There are some problems with providing probabilistic information in the selection task.
One is how to present the information. For example, Gigerenzer and Hoffrage (1995) dis-
cussed the superiority of frequency formats. Careful attention needs to be paid not only to
what information is presented, but also to how it should be presented, because information has
an effect only if it can be comprehended by participants. Another problem is that of how the
information is understood. Kahneman and Tversky (1979) have pointed out the difference
between a stated probability and a perceived subjective probability. As discussed in the section
Meta-analysis Using the Model, their p-function straightforwardly indicates the general ten-
dency to superadditiveness that coincides with the results of the estimation of subjective
probabilities.
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There has been much debate on the effects of prior beliefs on the selection task (Chater &
Oaksford, 1999; Evans & Over, 19996a, b; Klauer, 1999; Oaksford & Chater, 1998; Oaksford et
al., 1999; Pollard & Evans, 1983). Evans and Over (1996a) criticized the ODS model for not
being “general enough” because it assumes that the alternative hypothesis is only that p and q
are independent (p. 90). This excludes innumerable other alternative relationships. However,
as we have seen in the section Modelling Alternative Hypotheses, modelling the competition
among hypotheses did not provide very meaningful results. A model should be preferred and
usually sufficient if it is the simplest one that involves just a dependence and independence
hypothesis. However, in contrast to the model’s prediction that prior beliefs have almost no
effect in changing behaviour, a number of studies have shown the effects of prior beliefs,
especially on ¬q selection in the selection task (Fiedler & Hertel, 1994; Love & Kessler, 1995;
Pollard & Evans, 1981, 1983; Van Duyne, 1976). Prior belief, P(r), has been manipulated in
various ways in a number of studies. Fiedler and Hertel (1994) controlled it by creating the sus-
picion that it was false, by mentioning rule violations (e.g., “there are rumours that negate the
rule”) in the instruction. Oaksford et al. (1999) evaluated P(r) using rating tasks. However, in
some studies (e.g., Pollard & Evans, 1981, 1983), it was confused with P(q|r, p) (Chater &
Oaksford, 1999) or P(q|p). In these studies, low prior belief meant low P(q|p), or high P(q|p),
which was associated with the rule “if p then not q” (p ® ¬q). It may be reasonable to examine
the results of such studies in the framework of the three-hypothesis model introduced in the
section Modelling Alternative Hypotheses. Apart from the discussion of the distinction
between P(q|p) and P(r), however, both prior belief and the index of conditional dependency
have so weak an effect on changing the card selection tendencies, as we have seen, that the
model cannot account for the increase of ¬q selection in the high P(q|p) condition.

Though there have been no clear and definitive theories of these results up to now, one of
the most likely accounts in the framework of the QODS model is as follows. The participants
so strongly believed the rule p ® ¬q that their task became to verify it, as opposed to the exper-
imenter’s intention, which was to test p ® q. In addition, as Oaksford and Chater (1996)
pointed out, in the training phase of the Pollard and Evans (1983) experiment, as participants’
attention was directed to the probability of the occurrence of qs on the other side of p cards,
P(q|p), information on P(p) and P(q) may have been ignored. Consequently they adopted the
default rarity values. As shown in Experiment 1, probabilistic information without appropri-
ate emphasis hardly affects performance, especially when it deviates from rarity. Given the
rule p ® ¬q with P(p) = LOW and P(q) = LOW, the QODS models predicts high selections of
the p and ¬q cards.

In Fiedler and Hertel (1994), it seems that P(r) was properly manipulated, so the above
account cannot apply to their results. However, Oaksford et al. (1999) did not find the effects
of prior beliefs with systematic manipulations of P(p) and P(q). Considered along with the
results of some other experiments (e.g., Legrenzi, 1971; Mosconi & D’Urso, 1974, described
in Green, 1995a), it can be concluded that the effects of P(r) are not robust. Generally, the
results of a selection task experiment should be regarded as a mixture of various strategies, as
argued earlier. One of the most probable ways of accounting for the diverse results may be that
strategy usage may be influenced by information about suspicion.

Oaksford et al. (1999) properly distinguished u = P(q|r, p) and P(r) as, in our terms, the
unexceptionality and believability of the rule. It is important to distinguish these when analys-
ing or modelling human reasoning involving conditional sentences. However, it may also be
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true that, usually, people can hardly distinguish these two subjective probabilities on their
own. Only in regard to the following two special cases may one be able to discriminate these
probabilities: a belief in a complete dependence rule with a little suspicion versus a belief in an
incomplete dependence rule with no suspicion. For example, it is possible for a sceptical per-
son to doubt the completely dependent rule “if there is no unbalanced force acting on a
particle, then it remains at rest or continues to move in a straight line with a uniform velocity”.
In this case, u = 1 and P(r) ¹ 1. On the other hand, one can adopt an absolute belief in a rule,
“Birds fly”, that permit some exceptions. Here, u ¹ 1 and P(r) = 1. However, when one has an
incomplete belief (i.e., with any suspicion) in an incomplete dependent rule (e.g.,
“Polychlorinated biphenyl affects the reproductive health of human beings”), it would be very
hard to discriminate between u and P(r).

As a method for making this distinction clearer, in Experiments 1 and 2, participants rated
P(r) as the believability of the rule claimed by a specified person (who is described as an assis-
tant in the instructions). In evaluation tasks, it is important to ensure that participants do not
confuse u and P(r). At the same time, however, it is important to keep in mind the reliability or
the validity of participants’ explicit (meta-)cognition of their own subjective probabilities. It is
obvious that participants do not perform explicit arithmetical operations on subjective proba-
bilities, but they do perform implicit computations. The subjective probabilities used in
implicit cognitive processes probably cannot always be verbalized accurately. In Experiments
1 and 2, the evaluated subjective probabilities indicated extreme values, but the estimates were
moderate. These results show a dissociation between explicit and implicit cognition. There-
fore, we should not place too much trust in the values provided by participants.

Another rational model of the selection task proposed by Klauer (1999) addresses an
important issue related to prior belief and exceptionality. In his model, a risk function is
involved. It defines the risk of the decision procedure (an expected loss caused by possible
errors in hypothesis testing, i.e., the Type I and II errors in standard statistics) and the cost of
experimentation. When u ¹ 1, a “p and ¬q” case cannot refute the rule, and it can be consid-
ered to be an “exception”. For example, someone who has a (false) belief that “if I bring this
talisman I will always perform well” may hardly change his belief after experiencing some neg-
ative cases that he “brought the talisman and performed badly”. The extent to which one will
tolerate exceptions may be a matter of costs and benefits (i.e., risk), and of epistemic utility
(Evans & Over, 1996a, b). In the selection task, with semantically rich material, this problem
may become significant.

The moderate results for the parameter estimates (i.e., the superadditiveness of subjective
probabilities) in the meta-analyses and Experiments 1 and 2 can be understood from the stand-
point of adaptive rationality. Moderateness relates to conservativeness (cf., Edwards, 1968) or
insensitivity to the given information. The differences in participants’ estimated values of P(p)
and P(q) (i.e., |P(p) – P(q)|) were not very high. These results are consistent with those for
probability estimation in Kirby’s (1994) experiment, described in the section Meta-analysis
Using the Model, where it was shown that P(p)~- P(q). This suggests that participants find it
difficult to enlarge |P(p) – P(q)|. Put another way, it is difficult to lower v = P(p|r, q), or to
decrease the nearness to the biconditional relationship of the conditional rule. This indicates a
tendency to resist computing the most optimal behaviour in an unusual situation where the rar-
ity assumption is violated. If, in most cases of daily life, p and q are rare and they have a
biconditional relationship, then moderateness is no longer a bias, but may be an adaptive
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strategy, and thus rational in the sense of Anderson (1990). Indeed, according to the analysis of
Klayman and Ha (1987), people’s natural positive test heuristic is effective when P(p) and P(q)
are both low and similar in value. If one computes the most adaptive strategy every time one
confronts a hypothesis, total costs will add up. So, insensitivity to probabilistic information
could be adaptive in an environment where rarity is the norm. In the complex environment in
which we live, where no one can always predict all changes, adaptivity cannot be defined a
priori. Therefore, the unpredictability of the environment may be a cause of diversification of
strategies, and it might be in the nature of living things. Thus, the present study has explored,
at one strategy level, the sensitivity of people to probabilistic information, taking the discus-
sion forward from the work of Oaksford et al. (1997).

In summary, it was found that the following components are important to comprehend
performance on the abstract selection task: (1) the rarity assumption, (2) the biconditionality
assumption, and (3) moderateness, or insensitivity to changes in the environment. The QODS
model together with these three key concepts, each of which is an aspect of human adaptivity
to the environment, can explain a great deal of the experimental data on the abstract selection
task.
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APPENDIX

Expected information gain expressed as a function of P(p),
P(q), and P(r)
Generally speaking, I(X; Y|z), the average mutual information measure between x and y conditioned by z, is defined
by the following equations:

I X Y z H X z H X Y z

P x y z
P x y z

i j
XY

i j

( ; | ) ( | ) ( | , )

( , | )log
( | ,

= -

= å
)

( | )P x zi

Here, log x means log2 x, and the value of 0 log 0 is assumed to be 0.
Let P p p pi= ={ } { , }, Q q q qj= ={ } { , }, R r r rk= ={ } { , }, and x, y, and z represent P(p), P(q), and P(r), respectively.

Then, I(Q; R|p)—the expectation of uncertainty reduction by turning over the p (e.g., vowel) card—which is
abbreviated to I(p), can be calculated by the following equations:
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Here, x, y, and z indicate (1 – x), (1 – y), and (1 – z), respectively. I p( ), I(q), and I q( ) are also calculated similarly.
They can be described as a function of x, y, and z as follows:
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