Color Illusions Accompanied by Color Constancy Phenomena

Akiyoshi Kitaoka (Ritsumeikan University)

 Ref. Kitaoka, A. (2009). A brief classification of colour illusions. Talk at the 11th Congress of the International Colour Association (AIC 2009), Sydney.

	Multiplicative color change (giving transparent appearance)	Additive color change (giving translucent appearance)
Color illusion		
Actual examples		
Formula	If the color of a pixel in the target image is $\left(r_{0}, g_{o}, b_{0}\right)$, the color of the filter is ($\left.r_{f}, g_{f}, b_{f}\right)$, and its transmittance is T $\left(0 \leqq r_{o}, g_{o}, b_{o}, r_{f}, g_{f}, b_{f}, T \leqq 1\right),$ then the resulting color is given as $\left(\left(T+(1-T) r_{f}\right) r_{o},\left(T+(1-T) g_{f}\right) g_{o},\left(T+(1-T) b_{f}\right) b_{o}\right) .$	If the color of a pixel in the target image is (r_{0}, g_{0}, b_{0}), the color of the filter is (r_{f}, g_{f}, b_{f}), and its transmittance is T $\left(0 \leqq r_{0}, g_{o}, b_{o}, r_{f}, g_{f}, b_{f}, T \leqq 1\right)$, then the resulting color is given as $\left(T r_{o}+(1-T) r_{f}, T g_{o}+(1-T) g_{f}, T b_{o}+(1-T) b_{f}\right) .$

Original image

Values x and y were obtained using the formula from sRGB to XYZ.

Two-colored image (modified Land's method)

(red 50\%)

Gray or nearly gray appears to be bluish.

Additively color-changed image

(red 50\%)

Red purple appears to be bluish.

Multiplicatively color-changed image

Dark blue appears to be bluish. This demo is not regarded as color illusion because of the same hue.

Two-colored image (Two-colorization and additive color change)

 (red 50\%)

Grayish red appears to be bluish.

Dress debate

"Dress illusion" (February 2015) http://swiked.tumblr.com/post/112073818575/guys-please-help-me-is-this-dress-white-and
Ambiguity in the perceived color combination

Explanation given by @budoucha (Twitter) (presented with permission)

Many people see brown as black. How do you see this image?

