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Abstract

A stationary pattern with asymmetrical luminance gradients can appear to move. We hypothesized that the source signal of this illu-
sion originates in retinal image motions due to fixational eye movements. We investigated the inter-subject correlation between fixation
instability and illusion strength. First, we demonstrated that the strength of the illusion can be quantified by the nulling technique. Sec-
ond, we concurrently measured cancellation velocity and fixation instability for each subject, and found a positive correlation between
them. The same relationship was also found within a single observer when the visual stimulus was artificially moved in the simulation of
fixation instability. Third, we confirmed the same correlation with eye movements for a wider variety of illusory displays. These results
suggest that fixational eye movements indeed play a relevant role in generating this motion illusion.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

It has been pointed out that illusory motion can be seen
in a completely static figure (e.g., a figure printed on a sheet
of paper) (Faubert & Herbert, 1999; Fraser & Wilcox,
1979; Naor-Raz & Sekuler, 2000). The underlying mecha-
nism of this illusion is currently under debate. Recently,
one of the authors (A.K.) has created variants of the illuso-
ry figures (bitmap figures are currently available on the
internet; see http://www.ritsumei.ac.jp/~akitaoka/index-
e.html), an example of which is shown in Fig. 1. We found
that the perceived motion was as vigorous as real motion,
and wondered what neural mechanism is responsible. The
design rule is simple: construct an array of four regions
having different luminances in the systematic order,
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‘‘black,’’ ‘‘dark gray,’’ ‘‘white,’’ and ‘‘light gray’’ (Ashida
& Kitaoka, 2003; Kitaoka & Ashida, 2003). Slow illusory
motion is seen between adjacent regions; the perceived
direction is in the order described above, but never the
other way around (Fig. 2A). Also, the illusion is clearer
when the array pattern is repeated in a row such that the
patterns comprise a circle (see Fig. 1), and when it is viewed
peripherally.

Several investigators have previously paid attention to
the motion illusion seen in such an asymmetric luminance
gradient, but they have typically used a saw-tooth lumi-
nance profile, not the above-mentioned profile. Fraser
and Wilcox (1979) noted a large individual difference
(and also a genetic similarity) in perceptual strength of
the illusion. Faubert and Herbert (1999) reported that the
illusion was more vigorous after an eye blink or a saccade.
Naor-Raz and Sekuler (2000) found that the illusion
became more vigorous in more peripheral observations,
for longer durations, and at higher luminance contrasts,
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Fig. 1. The ‘‘rotating snakes’’ illusion. When one loosely looks at the
center, the outer four disks appear to rotate slowly, with two in the
clockwise direction and the other two in the counterclockwise direction.
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Fig. 2. Schematics of the stimuli. (A) The design rule of the ‘‘rotating
snakes’’ illusion. The order of the four luminance levels is critical. This
pattern consists of the fundamental and the odd harmonic components.
The lower curve shows the luminance profile of the fundamental plus the
third harmonic components, with the central straight line indicating
the mean luminance. (B) Illustrations of the stimulus configuration and
the waveforms used in illusion cancellation. The abscissa indicates polar
angle (rightward is clockwise).
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and also mentioned the possible involvement of involun-
tary fixational eye movements. In line with these previous
investigations, we argue that a physically static figure for
this motion illusion is not static at all on the retina, but
is instead always moving in random fashion together with
fixational eye movements. The amplitude of fixational eye
movements is known to be substantially different among
subjects (Murakami, 2004), suggesting that inter-subject
variability in perceptual strength as reported by Fraser
and Wilcox might be a consequence of the variability of
eye movements. In addition, fixation is less stable after a
saccade than during steady fixation (Rucci & Desbordes,
2003), which implies that Faubert and Herbert’s observa-
tion is possibly consistent with oculomotor statistics.

However, no previous studies have offered convincing
psychophysical evidence for a relationship between the
strength of this illusion and eye movements. Our hypothe-
sis is that illusion strength positively correlates with fixa-
tion instability: as gaze fluctuates more, the retinal image
of a physically static figure fluctuates more, and these jit-
tery motions on the retina consequently lead to more vigor-
ous impressions of illusory motion (we will later discuss
how random image fluctuations are converted to smooth
motion impression). To test this hypothesis, it would be
ideal to vary a subject’s fixation instability in a systematic
manner and observe how this affects illusion strength.
However, it is not easy to manipulate the amplitude of fix-
ational eye movements of an individual. We therefore
recruited a relatively large number of subjects and plotted
inter-subject scattergrams. As a result, we found a positive
correlation between illusion strength and fixation
instability.
The present study is comprised of three experimental
sections. In the pilot experiment, we devised a psychophys-
ical method of velocity cancellation to quantify illusion
strength in a precisely controlled stimulus. In the main
experiment, we concurrently measured cancellation
velocity and fixation instability for 22 subjects to see an
inter-subject correlation between these quantities. Within
a single subject, we also tested the dependence of illusion
strength on the magnitude of simulated fixation instability,
by actually oscillating the visual stimulus. In the subsidiary
experiment, we had 53 subjects rate the perceptual strength
of the illusion and also separately measured fixation
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Fig. 3. The results of illusion cancellation for the four subjects. The bars
represent cancellation velocity with 95% fiducial limits. Positive and
negative values indicate counterclockwise (CCW) and clockwise (CW)
directions, respectively. Indicated by the rightmost bar is the differential
cancellation velocity between the CW and CCW stimuli.
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instability to duplicate our finding in a wider variety of illu-
sory figures.

2. Pilot experiment: Illusion cancellation

In this experiment, we tested whether the illusion can be
quantified in an objective fashion by nulling the illusory
motion with opposing real motion. One of the authors
(H.A.) and three naı̈ve subjects with normal (or correct-
ed-to-normal) visual and oculomotor functions
participated.

2.1. Methods

2.1.1. Apparatus

The stimuli were generated on a Windows PC with the
DirectDraw technology, and were displayed on a CRT
monitor (NANAO, E57Ts, 1024 · 768 pixels, 0.30 mm/pix-
el, refresh rate 75 Hz, viewing distance 46 cm constrained
by the chinrest). The mean luminance was 36 cd/m2. The
subject binocularly viewed the stimulus in a dim room.

2.1.2. Stimuli

The stimuli were created on the basis of the stepwise
luminance rule (Fig. 2A). To allow minute control of stim-
ulus speed using sub-pixel coding, we used a smooth com-
pound waveform that consisted of the first and the third
harmonic components of the stepwise stimuli. Luminance
(m) as a function of polar angle (h) is given by

mðhÞ ¼ c½cosðf hÞ þ cosf3f ðhþ /Þg=3�; ð1Þ
where f is the spatial modulation frequency, / is the rela-
tive phase between the two components, and c is the mod-
ulation depth. The grating was asymmetric when / = ±p/
2, while it was symmetric when / = 0. The asymmetric
stimuli are hereafter referred to as CW (clockwise) and
CCW (counterclockwise) and the symmetric stimuli are re-
ferred to as N (neutral). Note that these stimuli were de-
fined by the physical properties but were named to
connote expected direction perception (Fig. 2A).

Radial gratings of this waveform were used (Fig. 2B).
The width of the ring was 3.6 deg of visual angle, stimulat-
ing the retinal locations between 7.4 and 11.0 deg in the
periphery. A disk of 1.3 deg radius, which was filled with
random black and white dots, was located in the center
for gaze control. Since fixational eye movements were sup-
posed essential for this illusion, the subjects were instructed
not to fixate hard but to look inside this disk loosely. The
other area within the screen was filled with the mean-lumi-
nance gray.

The spatial frequency of the gratings (f) was 48 cycles
per annulus. It is empirically known that the illusion is
enhanced by dividing the figure into thinner stripes, as
done by Fraser and Wilcox (1979) and Faubert and Her-
bert (1999). We therefore divided the ring into a central
stripe of 2.4 deg and two flanking stripes of 1.2 deg. The
overall spatial phase was randomly set for each trial, and
the central phase was always shifted by a half cycle from
the flanking ones. The modulation depth (c) was 0.53, so
that the Michelson contrast of the symmetric grating was
0.71 and that of the asymmetric grating was 0.66. They
drifted either in the clockwise or the counterclockwise
direction at the speed of 0.0525–0.2625�/s (0.009–
0.044 rpm) by the step of 0.0525�/s, where 1�/s corresponds
to one degree of polar angle per second.

2.1.3. Procedure

The stimulus speed that gave the subjective stationary
point was measured by the method of constant stimuli. A
drifting grating was presented for 0.5 s, and the subject
made a forced-choice judgment of the rotation direction
and responded using the keyboard. Each trial was initiated
by the subject by pressing a key. For each data point, 40
responses were collected through five sessions, except sub-
ject Y.S. for whom 32 responses were collected.

The speed and the grating type were randomized within
a session. It was impossible during this short period to tell
which of the three types was presented.

2.2. Results

The naı̈ve subjects did not find the task difficult. They
did not experience competing or transparent percepts of
real and illusory motion. The shift of null point of the psy-
chometric function therefore indicates the speed that
appeared stationary.

The null velocity was calculated by using the probit
analysis. As shown in Fig. 3, the null point was shifted
towards the counterclockwise direction for the CW stimulus
and in the clockwise direction for the CCW stimulus, which
means that the illusion occurred in the expected directions.
The N stimulus did not yield significant bias in either direc-
tion. The results confirmed that the illusion is quantifiable
by nulling it with real motion, which implies that the



2424 I. Murakami et al. / Vision Research 46 (2006) 2421–2431
illusion arises as a consequence of visual motion processing
at the sensory level.

Although there were some variations in the cancellation
velocity among subjects, this is expected from inter-subject
variability of illusion strength that we are addressing in the
present study. The fiducial limits for Y.S. are particularly
asymmetric (i.e., the true null point could be larger than
this estimation, but could not be smaller). Faster test stim-
uli should have been used for this subject, judging from the
psychometric functions. (In the next experiment, where
quantitative estimation was more crucial, an adaptive
method was used instead of the method of constant stimu-
li.) Subject Y.K. showed an overall bias towards the coun-
terclockwise direction of the null points, but the difference
between responses for the CW and CCW stimuli was never-
theless clear for this subject. To factor out the overall bias,
the difference between the cancellation velocities for the CW

and CCW stimuli were divided by two and plotted by the
rightmost bar. This differential cancellation velocity will
be used (and will be simply called the ‘‘cancellation veloc-
ity’’) hereafter to represent the illusion strength as quanti-
fied by the cancellation method.

3. Main experiment: Cancellation velocity and fixation

instability

As the illusion strength was shown to be objectively
measurable, its correlation with fixation instability was
assessed in the next experiment. While the subject was per-
forming a psychophysical task to obtain the cancellation
velocity, his or her eye movements were recorded concur-
rently. The first author and 21 naı̈ve subjects (19 females
and 3 males, aged 20–39) with normal (or corrected-to-nor-
mal) visual and oculomotor functions participated.

3.1. Methods

3.1.1. Apparatus and stimuli
The stimulus was presented on a 21-in. color CRT mon-

itor (Sony GDM-F520, 640 · 480 pixels or 42.7 deg · 32 -
deg, refresh rate 75 Hz, viewing distance 54 cm
constrained by the chinrest) controlled by a computer
(Apple Power Macintosh G3). The stimulus configuration
was identical to that used in the Pilot Experiment, except
that the luminance contrast was 0.99.

To ask whether fixational eye movements of each sub-
ject could vary with experimental conditions, we modified
the appearance of the fixation point (but note that these
modifications were found to be ineffective). A tiny black
disk (10 min in diameter), a larger white disk (55 min in
diameter), or no fixation point, was provided during stim-
ulus presentation. In the inter-stimulus interval, the tiny
disk was provided constantly to help maintain fixation.
The appearance of the fixation point was abruptly changed
to the predetermined shape (e.g., to the large white disk)
133 ms before stimulus onset, and was abruptly returned
to the tiny disk 13 ms after stimulus offset.
3.1.2. Procedure

One experimental set (90 s) consisted of 20 repeated tri-
als, sandwiched by sequential presentation of 8 calibration
dots (for eye-movement recording) at the beginning and
end of the set. The subject was given a break for 30–
180 s between sets, for ethical and technical reasons. All
sets were finished within 60–70 min. In each set, the stimu-
lus was presented for 0.5 s, and was followed by the inter-
stimulus interval for 1.5 s, within which the subject had to
indicate the perceived direction (clockwise or counterclock-
wise) of the grating by pressing a key. Each subject had
learned the adequate timing of key-pressing over more than
200 practices; our subjects failed to respond in time for
only 0.2% of actual trials, in such cases the staircase main-
tained the same level at the next trial.

The adaptive staircase method with the PEST transition
rule (Taylor & Creelman, 1967) was used to find the null
point for each of the two stimulus types (CW and CCW)
and for each of the three fixation-point types. For each
set, the fixation-point type was fixed but the two stimulus
types were intermingled randomly from trial to trial. Since
each set contained only 20 trials, there were 10 repeated tri-
als for the CW stimulus and 10 for the CCW stimulus. The
staircase sequence for each was therefore ‘‘inherited’’
across sets, such that the last trial of the first set and the
first trial of the second set should be regarded as though
two consecutive trials. As such, a complete staircase (com-
prised of 60 virtually consecutive trials) was actually a
splice of 6 sets. The average of staircase transition points
(excluding the first four transitions) was taken as the null
point.

3.1.3. Eye-movement recording

Fixational eye movements during a set were recorded
concurrently. As the index of fixation instability, we used
the variability of horizontal miniature drift eye movements
during fixation (Murakami, 2004). The horizontal gaze
position was recorded for both eyes by an infrared limbus
eye tracker (Iota Orbit 8) with the sampling resolution of
1 kHz. To recalibrate gain and offset parameters for each
trial, the recorded eye positions during calibration were
fit with the time series of calibration-dot positions; if
r < 0.65, trials were excluded (8.9% of all), but this criterion
did not influence the results.

Data were band-pass-filtered (1–31 Hz) to obtain instan-
taneous velocity with the effective resolution of 13 ms. A
microsaccade was detected by the velocity criterion of
10 deg/s (Bair & O’Keefe, 1998; Snodderly, Kagan, &
Gur, 2001) and counted within each stimulus duration.
To calculate saccade-free statistics of eye drifts in this dura-
tion, data within ±26 ms around each microsaccade were
removed from the analysis below. The histogram (with
the bin width of 0.1 deg/s) of instantaneous velocities of
eye drifts was plotted and fit with a Gaussian, the standard
deviation of which was taken as the index of fixation insta-
bility. The variance due to machine noise was also mea-
sured by using an artificial eye on a dummy head, and
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Fig. 4. Scattergram to visualize inter-subject correlation between cancel-
lation velocity and eye-movement statistics. Data from 22 subjects are
plotted, one point corresponding to one subject. The data for three
fixation-point types were averaged in the ordinate and abscissa. (A) Inter-
subject scattergram between cancellation velocity and fixation instability
(as defined by the standard deviation of drift velocity). The solid line
indicates the linear regression: y = 0.0185x + 0.002. (B) Inter-subject
scattergram between cancellation velocity and microsaccade frequency
(number per second). (C) Inter-subject scattergram between cancellation
velocity and fixation instability based on statistically significant cancella-
tion velocities only.
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was subtracted from human measurements. Since there was
no systematic difference between the left and right eyes, the
estimated fixation instability was averaged across eyes for
simplicity.

For a control, eye movements during passive observa-
tion of a stationary random-dot pattern (a disk-shaped
region with the diameter of 7 deg) with a central fixation
point were also recorded in intermingled sets (20 s each).
Data were analyzed the same way as above.

3.2. Results

We found a positive correlation between illusion
strength and fixation instability. We first saw eye-move-
ment data and cancellation velocity for three fixation-point
types separately, but found no effect of fixation-point type
(repeated-measures ANOVA for fixation instability,
F2,21 = 1.48, n.s.; for cancellation velocity, F2,21 = 1.44,
n.s.). Therefore, to reduce noise, the cancellation velocity
data and fixation instability data were averaged across
the three fixation-point types. The inter-subject scatter-
gram is plotted for these averaged data (Fig. 4A). Each
point corresponds to each subject. Clearly, a positive corre-
lation between illusion strength and fixation instability was
revealed (r = 0.425; t20 = 2.10, p < 0.05).

The same analysis was also made between cancellation
velocity and the frequency of microsaccades (Fig. 4B);
there was no indication of correlation (r = �0.082, n.s.).

One might notice that, in Fig. 4A, two subjects exhibited
negative cancellation velocities. Actually, these data points
were not significantly different from zero velocity, hence
probably the apparent negative deviation only reflects sam-
pling noise derived from a limited staircase dataset. One
might then wonder whether these points artificially led to
the above correlation. However, this was not the case. In
Fig. 4C, the data were analyzed the same way as Fig. 4A,
but we excluded the data in each condition if the cancellation
velocity was not statistically significant. After this stringent
screening, a positive correlation between illusion strength
and fixation instability was not only confirmed but also sub-
stantially improved (r = 0.571; t15 = 2.69, p < 0.05).

We cannot immediately interpret the correlation we
found as the causation that the small eye movements drive
the illusion; theoretically the reverse direction is possible,
i.e., that the illusion increases fixation instability. This
direction is extremely unlikely, however. Among experi-
mental sets, we also intermingled control sets in which each
subject’s fixation instability was monitored during passive
viewing (simple fixation task). The inter-subject variability
did not substantially increase during the motion-cancella-
tion task (Fig. 5); there was a high positive correlation in
fixation instability between the passive-viewing condition
and motion-task condition (r = 0.868; t20 = 7.82,
p� 0.0001), and the data points gathered along the identi-
ty function. Therefore, the inter-subject variability would
be interpreted as a maintained characteristic inherent in
the particular set of participants.
To further elucidate the causal link, we repeated the
cancellation experiment on within-subject basis, by apply-
ing actual jittery motions at variable speeds to the visual
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Fig. 5. Scattergram to visualize inter-subject comparison of fixation
instability between the motion-task condition and passive-viewing condi-
tion. Data from the 22 subjects are plotted, one point corresponding to
one subject. The broken line is y = x.
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stimulus on the monitor. The fixation point remained
stationary, whereas the radial grating slightly shifted its
overall position, mimicking image motions caused by
small eye movements. The instantaneous velocity of the
frame-by-frame shift was chosen randomly from a two-di-
mensional (horizontal · vertical) isotropic Gaussian proba-
bility density function. The actual shift was rounded by the
display routine at pixel-wise spatial resolution (2.5 min),
but was fine enough relative to the visual acuity at the given
eccentricity. The standard deviation of the Gaussian, or the
‘‘simulated fixation instability,’’ was the independent
variable; the differential cancellation velocity was the
dependent variable. The simulated fixation instability was
fixed within each session, which was comprised of three
0.1

0.2

0.3

0 0.5 1 1.5 2 2.5

Simulated fixation
instability (deg/s)

C
an

ce
lla

tio
n 

ve
lo

ci
ty

 (
˚/

s)

Fig. 6. Differential cancellation velocity plotted as a function of ‘‘simu-
lated fixation instability,’’ i.e., standard deviation of velocity distribution.
In this experiment, the radial grating on the monitor was actually
oscillated according to the specified probability distribution of instanta-
neous velocity. The error bar indicates the standard error of mean. Solid
circles: the first author’s data. Open squares: a naı̈ve subject’s data.
randomly interleaved PEST sequences (60 consecutive tri-
als for each) for the three stimulus types, CW, N, and CCW

(see Fig. 2B). Otherwise, the experimental procedure and
derivation of cancellation velocity were identical to the
main experiment. Results were based on five repeated stair-
case sessions for each condition. Our prediction was that
the cancellation velocity would become greater as the jitter
magnitude increased.

That was actually the case. The first author’s data are
shown with solid symbols in Fig. 6. As the simulated fixa-
tion instability increases, the cancellation velocity for the
same observer increased in a roughly linear fashion (test
of linear-regression coefficient, t63 = 8.03, p� 0.0001).
The same profile was also confirmed for one naı̈ve subject
(t23 = 2.66, p < 0.02), whose data are plotted with open
symbols.

Therefore, we take all the data described in this section
as converging evidence to strengthen the notion that the
greater image jitter produces the greater illusion.

4. Subsidiary experiment: Rated illusion strength and

fixation instability

The previous experiments used visual stimuli having
smooth compound waveforms. We were interested to see
whether our finding can be generalized to a wider variety
of original illusory figures, such as the illustration in
Fig. 1, which lead to a more compelling motion impression
than the compound waveform does.

In this subsidiary experiment, 25 such stimulus figures
were shown to 53 naı̈ve subjects (39 females and 14 males,
aged 20–39), who rated the perceptual strength of motion
impression. Fixational eye movements of these subjects
were also recorded.

4.1. Methods

4.1.1. Rating of illusory-motion strength
Twenty-five static figures (see the auxiliary file) were

selected from a collection of illusory figures designed by
one of the authors (A.K.). These static figures all complied
with the essential luminance structure that is requisite for
the illusion (Fig. 2A), and indeed elicited some impression
of slow drifting motion. The stimulus was presented on the
color liquid-crystal display of a laptop computer (Apple
PowerBook G4). The room was illuminated with office-
standard fluorescent lighting. The subject binocularly
observed the stimulus from a reading distance (approxi-
mately 50 cm) with the head as still as possible. The figures
were sequentially presented using graphic presentation
software (Microsoft PowerPoint X). Each presentation
was 15 s long. The screen remained white in inter-stimulus
intervals of 2 s. The subject was requested to give one of the
three verbal responses: ‘‘moved clearly,’’ ‘‘moved faintly,’’
or ‘‘did not move at all,’’ which were assigned linear rating
scores 1, 0.5, and 0, respectively, in the off-line analysis.
There were two conditions, FREE and FIX. In the FREE con-
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dition, the subject was allowed to make free eye movements
during stimulus presentation. In the FIX condition, the sub-
ject was requested to maintain fixation at a greenish sta-
tionary spot (with the diameter of 1 cm) at the center of
the display. Each subject participated in four experimental
sessions, two each for the FREE and FIX conditions, in a
counterbalanced order across subjects. We summed actual
scores across trials and then divided the sum by the theoret-
ical maximum (50) to obtain the normalized score ranging
0–1.

4.1.2. Eye-movement recording

In a darkroom, eye movements of each subject were
recorded in the same day but separately from the rating
experiment, under the assumption that fixation instability
of each given individual is relatively invariant across sepa-
rate sessions compared to inter-subject variability (failure
of this assumption would only make the data noisier but
would not lead to an artifactually significant correlation).
The setup was identical to the condition of passive observa-
tion in the main experiment.

4.2. Results

We plotted a scattergram (FIX vs. FREE) where one point
corresponds to one subject (Fig. 7). Evidently, the figures
used in the experiment were more or less effective at elicit-
ing motion impression. The normalized scores for our pop-
ulation of subjects could be reasonably approximated by a
Gaussian, making it easy to perform parametric tests.

Illusory motion was more salient in the FREE condition
than in the FIX (paired-difference t test, t52 = 3.29,
p < 0.005). However, the difference was small; steady fixa-
tion did not eliminate the illusion and, for several subjects,
resulted in almost the same rating score as in free viewing.
Indeed, the averaged ratio of FIX to FREE was 0.934.

Having confirmed fairly compelling illusions under the
FIX condition, we plotted an inter-subject scattergram for
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Fig. 7. Results of illusion-strength rating. Data from 53 subjects are
plotted in a scattergram, one point corresponding to one subject. The
diagonal line indicates y = x. The open symbol indicates the point of the
outlier plotted in Fig. 8.
this condition to see whether illusion strength is correlated
with fixation instability (Fig. 8A). A significant positive
correlation was found (r = 0.280; t50 = 2.07, p < 0.05), pro-
vided that the obvious outlier (open symbol) is ignored (if it
is included, r = 0.162; t51 = 1.17, n.s.).

Of all 53 subjects, all possible combinations of 51 sub-
jects including the outlier always showed much lower r

(min 0.084, max 0.227, median 0.159) than all possible
combinations of 51 subjects excluding him did (min
0.243, max 0.319, median 0.280), with no overlap between
the two distributions. Since his motion-detection perfor-
mance as assessed by random-dot patterns was normal,
his small rating cannot be explained by insensitivity to
motion. As each subject has his or her own criterion about
illusion strength, the outlier might have been extremely
conservative in giving rating scores.

The same analysis was also made between rating score
and the frequency of microsaccades (Fig. 8B); there was
no indication of correlation if the outlier was included
(r = 0.053, n.s.) or not (r = 0.127, n.s.).
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Fig. 8. Scattergram to visualize inter-subject correlation between rating
score in the FIX condition and fixation instability. Data from the 53
subjects are plotted, one point corresponding to one subject. The open
symbol indicates the outlier. (A) Inter-subject scattergram between rating
score and fixation instability. The solid line indicates the linear regression:
y = 0.132x + 0.342. (B) Inter-subject scattergram between rating score and
microsaccade frequency (number per second).
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5. Discussion

The present study examined the relationship between the
motion illusion perceived in static figures and fixational eye
movements. We found a positive correlation such that the
poorer fixaters see the stronger illusion.

5.1. Effects of retinal motion due to fixational eye movements

The present findings suggest certain contributions of fix-
ational eye movements to the occurrence of the motion illu-
sion. The fixational eye movements are incessantly making
retinal image motions, but we are unaware of such move-
ments of the visual field. Previously we have shown psycho-
physical evidence for a cortical mechanism by which a
stable visual world is maintained despite these eye move-
ments and demonstrated that specially arranged visual
stimulation can sometimes confuse this brain mechanism
(Ashida, 2002; Kitaoka, 2002; Murakami, 2003; Murakami
& Cavanagh, 1998, 2001; Sasaki, Murakami, Cavanagh, &
Tootell, 2002). We consider that the illusory slow drift
investigated in the present study is also one such rare occa-
sion where our visual system fails to cancel the spurious
image motions generated by small eye movements.

If this is true, the illusion should be abolished in the sta-
bilized retinal image. We informally tested this prediction
by casual observation of the afterimage of the stimulus.
Subjects (the three authors and three naı̈ve subjects in sep-
arate sessions) faced on the wall posted with a printed ver-
sion of a typical illusory figure (Fig. 1) or its control figure
(which is based on Fig. 1 except that the luminance rela-
tionship is flipped between adjacent local texture elements,
so that illusory motion between them cancels each other).
In normal illumination, the illusory figure yields a vivid
impression of rotary motions for all subjects, whereas the
control figure never appears to move. In a total darkness,
the experimenter triggered a strobe light (COMET TW-
04II) to illuminate the stimulus with an intense flash (decay
time <1.5 ms). All subjects subsequently experienced the
afterimage of the figure in the dark for around 10 s, but
they consistently reported that there was no illusory rota-
tion in the afterimage, or that the illusory and control fig-
ures made no difference, even though the afterimage of the
figure as a whole could appear to move about synchro-
nously with large-scale eye movements.

Fixational eye movements consist of three major types:
drifts, tremors, and microsaccades. In the present study,
fixation instability is represented by drifts. As the illusion
has been found to correlate with this statistic, eye-drift
speed is considered to be one of the major sources of that
illusion. What about other two types of small eye move-
ments? The involvement of tremors in visual perception is
unclear (Martinez-Conde, Macknik, & Hubel, 2004), but
it is highly unlikely that such tiny and rapid oscillations
with frequencies over 30 Hz mediate perception of slow
illusory motions. The involvement of microsaccades is pos-
sible, but our data were negative: there were no significant
correlations between the illusion strength and the frequen-
cy of microsaccades. We also point out that Zanker et al.
recently attempted to find a correlation between the
strength of motion illusion in an Op Art figure and the fre-
quency of microsaccades. While contribution of fixational
eye movements to illusory motion was demonstrated psy-
chophysically (Zanker, Doyle, & Walker, 2003) and com-
putationally (Zanker, 2004; Zanker & Walker, 2004),
their experimental data did not specifically reveal clear
dependence of illusory motion strength on the statistics
of microsaccades, leaving the question open as to what
component of fixational eye movements is really relevant.
The present finding suggests that the statistics of fixational
eye drifts rather than microsaccades might be a better
descriptor of the illusion strength of Op Art figures. How-
ever, the Op Art patterns used by Zanker et al. have a fun-
damentally different layout and therefore do not generate a
biased motion illusion as shown in the present study. There
might be different mechanisms involved in motion illusions
elicited by different types of static patterns.

5.2. Possible accounts for biased motion responses

Our findings implicate retinal image motions as some
kind of ‘‘power supply’’ of the illusory motion, but we have
not specified what underlying mechanism is responsible for
it, or why the illusory motion appears so smooth in spite of
random image fluctuation due to small eye movements. We
believe that the specific luminance pattern (Fig. 2A) used in
the illusory display is the key to these questions. One sce-
nario proposed by Conway et al. is that each small eye
movement somehow refreshes retinal stimulation, promot-
ing new onset responses in the stimulated area on the retina
(Conway, Kitaoka, Yazdanbakhsh, Pack, & Livingstone,
2005). As the response latency is known to be longer for
lower contrasts, the response to the dark (or light) gray
region will come later than the response to the black (or
white) region. These neighboring pairs of responses will
artificially create the ‘‘phi’’ movement (Anstis, 1970). Back-
us and Oruç also explained the illusion on the basis of dif-
ferential latency among visual responses to luminance
levels, and introduced the effect of adaptation to model
the smooth motion perception over many seconds (Backus
& Oruç, 2005).

However, this ‘‘latency-difference’’ scenario has a diffi-
culty in explaining why only the fixational drift, but not
the fixational saccade, positively correlated with illusion
strength in our data, for each microsaccade should be
refreshing retinal stimulation and should enhance the illu-
sion. Thus, we must also consider another scenario, in
which random retinal velocity due to incessant fixational
drifts is converted to smooth perceived motion. In a nor-
mal stimulus display, random image motions will be regis-
tered as such, in the same instantaneous velocity
everywhere. The motion processing system perhaps
dismisses such common image motions under the ecologi-
cal assumption that uniform motions originate in eye
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movements in most cases. The illusory display with the spe-
cific luminance pattern, however, confuses early motion
detectors, such that a particular direction of motion is arti-
ficially boosted whereas other directions are attenuated
(Murakami, Kitaoka, & Ashida, 2004). One such possibil-
ity is argued below.

The illusory figure comprises asymmetric gradients. In
Fig. 2A, the luminance steps are always larger on the left
of the highest-contrast parts (i.e., white and black) than
on their right. This spatial asymmetry results in a temporal
asymmetry by eye movements. At around these large steps,
the local contrast increases and decreases when the pattern
moves leftward and rightward, respectively (see also
Fig. 10). We can explain the effects of such asymmetry by
the gradient scheme of motion detection, in which velocity
is approximated by dividing the temporal derivative by the
spatial derivative of intensity at each location (e.g., Benton
& Johnston, 2001; Harris, 1986; Johnston, McOwan, &
Buxton, 1992; Marr & Ullman, 1981; Mather, 1984; Bruce,
Green, & Georgeson, 2003). In this scheme, overestimation
of temporal gradient directly results in overestimation of
velocity.

A negative bias in the derivative operator would give
rise to such overestimation (Fig. 9). The temporal gradient
might be biologically estimated by a smooth, biphasic tem-
poral impulse response (Fig. 9A, gray curve), but here let
us consider the simplest case, i.e., a two-point discrete
impulse response (solid bars). Its operation is to calculate
the difference in intensity between s1 (e.g., the present)
and s2 (e.g., sometime in the past). Here, the convolution
of the image with the differentiator kernel is simply the
τ
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Fig. 9. Schematics of the negatively biased temporal kernel and its
behavior. (A) The simplified differentiator. The temporal impulse response
is indicated by the solid bars, whereas a biologically more plausible
smooth function is drawn in the gray curve. (B) The temporal gradients
estimated by the negatively biased kernel. Actual intensity changes are
indicated by the gray lines, whereas estimated slopes are indicated by the
black lines. The term ‘‘relative intensity’’ refers to the image intensity
relative to the mean luminance. The term ‘‘contrast’’ refers to the absolute
deviation from the mean luminance. For the sake of simplicity of
schematic, the unit is unspecified for these quantities.
scalar product of the relative image intensity and the tem-
porally reversed kernel at two peaks. For instance, when
the image intensity decreases and approaches the mean
luminance (the upper left of Fig. 9B, gray line), the differ-
entiator without bias would simply calculate the difference
between times designated as 1 and 2, i.e., the actual slope.
Now let us assume that the negative lobe of the kernel is
greater than the positive lobe, so that the relative intensity
at s2 is slightly ‘‘boosted’’ before subtraction. As a result,
the estimated slope becomes artificially steeper (black line).
The same overestimation of temporal gradient also hap-
pens when the relative intensity increases from darker to
zero (lower left). Note that in both cases, the contrast is
decreasing with time. On the other hand, the opposite thing
happens when the contrast increases with time (upper right
and lower right): the estimated slope becomes shallower
than actual, resulting in underestimation of temporal
gradient.

Fig. 10 further illustrates how the biased temporal ker-
nel overestimates rightward motion in the pattern of
Fig. 2A. Due to small eye movements, the retinal image
of the static stimulus is assumed to move sometimes to
the left, and sometimes to the right (top row). Velocity esti-
mation is assumed to take place in a spatially low-pass-fil-
tered version of the image (second row) and, in particular,
at those black curves where spatial gradients are steep
enough (i.e., where the denominator in the velocity calcula-
tion is the most reliable; see Marr & Ullman (1981)). The
third and fourth rows show estimated spatial and temporal
gradients, respectively. The open circles indicate the verid-
ical estimates. As they are symmetric about vertical
between the left and right panels, the estimated velocities
are of the same size with opposite signs. If the temporal
kernel is negatively biased, however, the estimation of tem-
poral gradient is biased, as indicated by the filled circles.
For the leftward motion, the local contrast increases with
time, so the temporal gradients are underestimated. The
opposite thing happens for the rightward motion.
Therefore, the velocity estimates are no longer symmetric:
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Fig. 10. Explanation of the illusion by the gradient model with the
negatively biased temporal kernel. Variables I, x, and t denote intensity,
horizontal dimension, and time, respectively.
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it becomes smaller for the left and larger for the right. This
imbalance accords with the illusion of rightward motion.

The bias in the temporal derivative operator is biologi-
cally plausible, because perfect balance would be difficult
to assure in biologically implemented causal filters. Such
a negative bias in the temporal impulse response has been
implicitly suggested by some studies (e.g., Burr & Morrone,
1993; Kelly, 1961).

Though we tentatively propose the gradient model as a
possible account, similar accounts based on other motion-
detection schemes such as the motion energy model (Adel-
son & Bergen, 1985) might not be impossible (Mather,
1994). We are also aware of several important points that
are yet to be determined. First, the feasibility of our
explanation is still wanting in convincing empirical tests.
Second, the model does not explain why the illusion is
more salient in peripheral viewing. Third, the output
might depend on the choice of sampling locations of spa-
tial and temporal derivatives. To address these issues, we
are currently engaged in elaboration of the model with
parametric computer simulations and phenomenological
observations. Finally, it is still an open question as to
how these elementary velocity representations in low-level
motion processing are spatially and temporally integrated
within an image and segregated from its surround to
support our perception of global illusory motion. Our
ultimate goal is to propose a unified theory incorporating
the present study with recent physiological (Ölveczky,
Baccus, & Meister, 2003), psychophysical (Murakami &
Cavanagh, 1998), and computational (Fermüller, Pless,
& Aloimonos, 1997; Zanker, 2004) studies examining
the relationship between perception and fixation
instability.
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