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This paper presents a new theory of syllogistic reasoning. The proposed model assumes there are prob-
abilistic representations of given signature situations. Instead of conducting an exhaustive search, the
model constructs an individual-based ‘‘logical” mental representation that expresses the most probable
state of affairs, and derives a necessary conclusion that is not inconsistent with the model using heuristics
based on informativeness. The model is a unification of previous influential models. Its descriptive
validity has been evaluated against existing empirical data and two new experiments, and by qualitative
analyses based on previous empirical findings, all of which supported the theory. The model’s behavior is
also consistent with findings in other areas, including working memory capacity. The results indicate that
people assume the probabilities of all target events mentioned in a syllogism to be almost equal, which
suggests links between syllogistic reasoning and other areas of cognition.
� 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
All fools are poets; this the Prefect feels; and he is merely guilty
of a non distributio medii in thence inferring that all poets are
fools.

[— Edgar Allan Poe, The Purloined Letter (1845)]
1. Introduction

Reasoning is intended to derive reasonable conclusions from
premises. Given the assertions that ‘‘The Kyotoite are Japanese”
and ‘‘The Japanese are Asian,” it is reasonable to conclude that
‘‘The Kyotoite are Asian.” In this case, the relation is transitive: if
K? J and J? A, then K? A. However, if one knows that ‘‘The
Kyotoite are suave,” it is illogical to infer that ‘‘Suave people are
Kyotoite.” A relation is symmetric if X? Y implies Y? X, but such
symmetrical derivations are not licensed in logic. As such, some
inferences are logically valid, and others are invalid; some are easy,
and others are difficult. The difficulty of inference depends, at least
partly, on its logical form, but an error-prone argument can some-
times be obvious with a slight change in wording (e.g., using famil-
iar terms). At the same time, difficulty of inference must relate to
other types of thinking, because if nothing else, reasoning must
be carried out in working memory. Any comprehensive psycholog-
ical theory of reasoning must address these issues, that is, why
some inferences are difficult and how this relates to other areas
of cognition. The current paper proposes one such attempt, along
with the novel idea of probabilistic representation. Before going into
detail, however, I first motivate two issues regarding cognitive
architecture and inferential structure: mental representations
and symmetry, which will feature strongly in what follows.

The current theory (probabilistic representation theory hereafter)
proposes dual mental representations: probabilistic representa-
tions and individual-based mental models.1 This is based on the
hypothesis that people have several thinking modes. We sometimes
take a summary view with probabilistic representations when, for
example, we are seeking some rules or tendencies that are useful
for predictive inference. In this heuristic mode, we think and talk
about probable relations between classes of events or objects (e.g.,
‘‘I know the Kyotoite are suave [by and large].”). In contrast, when
critically testing a hypothesis or thinking counterfactually, we take
a distinctive view with individual-based representations. In this ana-
lytic mode, we talk about stricter (i.e., more logical) rules, sometimes
focusing on exceptions (e.g., ‘‘One of my acquaintances is Kyotoite,
but he is not suave; so, I don’t think this is true.”). In this way,
we can easily switch views according to factors such as context,
situation, motivation, and purpose. These two distinctive views, I
eant by
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assume, depend on different representations: continuous (i.e., proba-
bilistic) and discrete (i.e., individual-based).

Probabilistic representation theory supposes the summary view
precedes the distinctive, because the summary view is based on
heuristic processes but the distinctive view is based on deliberate
processes. People first have a probabilistic intuition, and next con-
struct mental models based on that intuition that serves for logical
tests. As a result, the distinctive view is affected by the summary
view, in that, people’s probabilistic intuitions restrict how they test
logical relations. In modeling this mechanism, a set of discrete
mental models is a summary representation of a primitive contin-
uous probabilistic model, and not the other way around. This
implementation is unique among probabilistic approaches that
have been proposed for deductive reasoning. One previous model
(Chater & Oaksford, 1999) did not propose any internal representa-
tions, and the others (Guyote & Sternberg, 1981; Johnson-Laird,
Legrenzi, Girotto, Legrenzi, & Caverni, 1999; Khemlani, Lotstein,
Trafton, & Johnson-Laird, 2015) assume the priority of discrete
models, introducing probabilistic behavior by allocating numerals
(i.e., probability values) to discrete models.

This aspect of the theory is an extension of recent approaches to
reasoning based on probability (e.g., Chater & Oaksford, 1999;
Evans & Over, 2004; Oaksford & Chater, 2007) called the new para-
digm in the psychology of reasoning (Elqayam & Over, 2013; Over,
2009). Although logic guides deductive reasoning, the idea that
deduction depends on logic as a normative theory of human rea-
soning is now an ‘‘ancient proposal” (Johnson-Laird, Khemlani, &
Goodwin, 2015, p. 201). After the 1990s, many researchers moved
to probabilistic approaches to reasoning. In these approaches it is
usually presupposed that degrees of certainty or belief correspond
to subjective probabilities, and the validity of an argument is
assessed via the probabilistic validity, or p-validity, proposed by
Adams (1975): the uncertainty (i.e., the complement of the proba-
bility) of a p-valid conclusion does not exceed the sum of the
uncertainties of the premises. This presupposition implicitly
requires each proposition to retain its probability (at any time in
any context, in principle) to enable probabilistic inference as
follows:
(prob
)

The Kyotoite are suave.

(prob
(prob

(prob
= 0.85)

The suave are . . .
 = 0.43)

. . .
 = 0.05)
The Kyotoite are . . .
 = . . .)
2 It is called the equiprobability assumption in Hattori and Oaksford (2007) and
Hattori and Nishida (2009). However, some researchers use the same term with the
different meaning that each individual possibility has the same probability (e.g.,
Johnson-Laird et al., 1999; Lecoutre, 1992). To avoid confusion, I adopt a different
name here.
This actually places an excessive load on the working memory,
especially when forming a chain of inferences, because an extra
piece of information about probability must be retained for each
statement. Moreover, even a couple of premises can result in innu-
merable (p-)valid (but vapid) conclusions (see, Johnson-Laird et al.,
2015). Thus, a model based on a system of p-validity (as well as a
standard binary logic) can generate serious concerns at the algorith-
mic level about the feasibility of a model implementing (deductive)
reasoning. It seems reasonable to suppose that people discretize
(i.e., simplify) their degrees of belief in each proposition at some
point in time. For example, a statement with a probability of 95%
or higher may be regarded as just a ‘‘true” statement somewhere
in the course of the reasoning process. In the probabilistic represen-
tation model, this is done by constructing a discrete model (i.e.,
by generating a small number of samples) in accordance with a
given probability distribution contained in the probabilistic
representation.

The current theory also proposes that symmetry inferences are
central to syllogistic reasoning performance. The symmetry infer-
ence is prevalent not only in syllogisms, but also in other areas.
For example, a conditional ‘‘If X then Y” is often interpreted as if
it also means that ‘‘If not-X then not-Y” or ‘‘If Y then X” at the same
time (e.g., Geis & Zwicky, 1971; Staudenmayer, 1975). A logic-
based account for this inference is that the conditional ‘‘X? Y” is
prone to be interpreted as a biconditional ‘‘XM Y” (e.g., Johnson-
Laird & Byrne, 1991). Similarly, if one is told that the probability
of a woman who has breast cancer receiving a positive mammog-
raphy is 80%, then one is apt to infer that the probability that a
woman who tested positive actually has breast cancer is also about
80%, even if the answer clearly violates the Bayesian norm (Eddy,
1982; Gigerenzer & Hoffrage, 1995; Tversky & Kahneman, 1980).
Many researchers have attributed this type of error to the inverse
fallacy, a tendency to confuse a given conditional probability P
(symptom | disease) with the inverse conditional probability, P(dis-
ease | symptom), that is to be judged (Braine, Connell, Freitag, &
O’Brien, 1990; Gavanski & Hui, 1992; Hammerton, 1973; Koehler,
1996; Macchi, 1995; Villejoubert & Mandel, 2002; Wolfe, 1995).
These are all examples of the symmetry inference.

One of the reasons why symmetry inference is important for a
comprehensive theory of thinking is that this mode of inference
has been argued to be distinctively human. Nonhuman animals
such as chimps (Dugdale & Lowe, 1990, 2000), find symmetry
inferences extremely difficult (e.g., D’Amato, Salmon, Loukas, &
Tomie, 1985; Sidman et al., 1982). Many researchers have pointed
to the relevance of symmetry to language processing (e.g., Dugdale
& Lowe, 1990; Horne & Lowe, 1996; Oaksford, 2008) or to creativ-
ity (Hattori, 2008). The fundamental ability to perform symmetry
inferences may be constrained by phylogenetic factors, and is
closely related to other areas of cognition such as language and
creativity that are only found in humans. Thus, appearance of
symmetry inferences in syllogistic reasoning may be a reflection
of our common cognitive architecture.

A theory with probabilistic representations may afford an
insight into the nature of symmetry inferences. Hattori and
Nishida (2009) hypothesized that people tend to regard two target
classes of objects or events as almost equal in size (see Fig. 1). For
example, when we think of a disease (e.g., breast cancer) and its
symptoms (e.g., a positive mammography), we assume that the
sizes of two target sets, one for the disease and the other for symp-
toms, are roughly the same. This default assumption results in the
inverse fallacy. It is reasonable to assume that the target events
have a similar probability, unless we know this is not the case
(e.g., showing many false positives for a rare disease), because
we then gain some information about the credibility of the test.
Thus equating the sizes of two target sets (i.e., a set-size balancing
principle2) is a reasonable model of ignorance and the simplest
assumption. This principle is known to be maintained in other areas
of human thinking, including causal induction (Hattori & Oaksford,
2007) and reasoning in the Wason selection task (Hattori, 2002).
Therefore the current theory can reveal an important new link
between deductive reasoning and other areas of thinking.

I now briefly introduce the syllogistic reasoning task and some
of the terminology required to understand the literature and the
current theory before turning to review of previous studies. I fol-
low the orthodox Aristotelian classification in this paper, although
there are several different forms of notation used in the psycholog-
ical literature (see also Appendix A). Syllogisms are constructed
with two premises and one conclusion. Each statement is one of
four forms called moods. Traditionally, these are labeled A, I, E,
and O:



Table 1
All types of syllogism with their valid conclusions, and predictions by the mental
models theory.

No Type Valid conclusion MMT

Aristotle J-L #MM 1st 2nd 3rd

1 AA1 A A 1 A,A0

2 AA2 – – 2 A,A0 N
3 AA3 I I,I0 1 A,A0

4 AA4 I A0 1 A,A0

5 AI1 I I,I0 1 I,I0

AI2 – – 2 I,I0 N
AI3 I I,I0 1 I,I0

P

S
S

P

(I) Imbalanced           (II) Balanced 

Fig. 1. Probabilistic structures.
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A:
M – P
S – M
S – P

(1)
All X are Y
6
7

AI4 – – 2 I,I0 N
I:
 Some X are Y 8

IA1 – – 2 I,I0 N

0

E:
 No X are Y 9
IA2 – – 2 I,I N
IA3 I I,I0 1 I,I0
O:
 Some X are not Y 10
11

12 IA4 I I,I0 1 I,I0

13 AE1 – O0 3 E,E0 O,N O0

14 AE2 E E,E0 1 E,E0

15 AE3 – O0 3 E,E0 O,N O0

16 AE4 E E,E0 1 E,E0

17 EA1 E E,E0 1 E,E0

18 EA2 E E,E0 1 E,E0

19 EA3 O O 3 E,E0 O0 ,N O
20 EA4 O O 3 E,E0 O0 ,N O
21 AO1 – – 2 O,O0 N
22 AO2 O O 2 O0 O,N
23 AO3 – O0 2 O O0 ,N
24 AO4 – – 2 O,O0 N
25 OA1 – – 2 O,O0 N
26 OA2 – O0 2 O O0 ,N
27 OA3 O O 2 O0 O,N
28 OA4 – – 2 O,O0 N
29 II1 – – 2 I,I0 N
30 II2 – – 2 I,I0 N
31 II3 – – 2 I,I0 N
32 II4 – – 2 I,I0 N
33 IE1 – O0 3 E,E0 O,N O0

34 IE2 – O0 3 E,E0 O,N O0

35 IE3 – O0 3 E,E0 O,N O0

36 IE4 – O0 3 E,E0 O,N O0

37 EI1 O O 3 E,E0 O0 ,N O
38 EI2 O O 3 E,E0 O0 ,N O
39 EI3 O O 3 E,E0 O0 ,N O
40 EI4 O O 3 E,E0 O0 ,N O
41 IO1 – – 2 O,O0 N
42 IO2 – – 2 O,O0 N
43 IO3 – – 2 O,O0 N
44 IO4 – – 2 O,O0 N
45 OI1 – – 2 O,O0 N
46 OI2 – – 2 O,O0 N
47 OI3 – – 2 O,O0 N
48 OI4 – – 2 O,O0 N
49 EE1 – – 2 E,E0 N
50 EE2 – – 2 E,E0 N
51 EE3 – – 2 E,E0 N
52 EE4 – – 2 E,E0 N
53 EO1 – – 2 E,E0 N
54 EO2 – – 2 E,E0 N
55 EO3 – – 2 E,E0 N
56 EO4 – – 2 E,E0 N
57 OE1 – – 2 E,E0 N
58 OE2 – – 2 E,E0 N
59 OE3 – – 2 E,E0 N
60 OE4 – – 2 E,E0 N
61 OO1 – – 2 O,O0 N
62 OO2 – – 2 O,O0 N
63 OO3 – – 2 O,O0 N
64 OO4 – – 2 O,O0 N
The subject (S) and predicate (P) in the conclusion are called end
terms, and a term that does not appear in the conclusion is called
a middle term (M). The two terms X and Y in the first premise corre-
spond to P and M, or M and P, respectively; likewise, X and Y in the
second premise correspond to S and M, or M and S, respectively. As
each premise has two possibilities, there are four possibilities for
the positions of end and middle terms, which are called figures, as
shown in Fig. 2 (see also Appendix A). Because each of two premises
can be one of the four moods, and there are four possibilities
regarding the position of terms, there are 4� 4� 4 ¼ 64 possible
types of premises for logical syllogisms. These are expressed by a
set of three symbols, such as AA1, indicating the mood of the first
premise, the mood of the second premise, and the figure (1–4, see
Fig. 2). Of these 64 syllogisms, only 19 have a logically valid conclu-
sion that can be expressed in terms of A, I, E, and O, as shown in
Table 1 (the validity of a syllogism is somewhat controversial, see
Appendix A).

Symmetry inferences in syllogistic reasoning were first articu-
lated by Chapman and Chapman (1959), which is now called illicit
conversion, although the idea dates back to the early work of
Wilkins (1928) and Sells (1936). Their seminal (albeit ambiguous)
ideas, on which the current study relies heavily, seemed to account
for the trend of people’s major responses to syllogisms, as well as
the atmosphere hypothesis (Woodworth & Sells, 1935). However,
it was not until the 1970s that a comprehensive theory appeared.
Ceraso and Provitesa (1971) first proposed the concept of the inde-
terminacy of representations with regard to Euler circle representa-
tions of syllogisms. This concept is relevant to some major theories
in this area. They noted that premises in forms A, I, and O are
ambiguous in terms of specifying the set relations between the
terms in the premise. That is, ‘‘All X are Y” (A) is compatible with
two possible set relations, X ¼ Y and X � Y (X is included in Y),
which correspond to Euler circles D0 and D1, respectively, in
Fig. 3. Developing this idea, Erickson (1974) proposed a set analysis
theory, which Guyote and Sternberg (1981) later developed into a
much specific model called the transitive-chain theory, which is a
hybrid model of logic and probability. Each premise has one or
more possible representations in terms of set relations. This is
the main reason why the combined representation for two pre-
mises of a syllogism always has alternatives. To handle this inde-
terminacy, Guyote and Sternberg (1981) introduced probabilities
into the model, and established representational priorities to
Note. The prime symbol indicates that the order of terms is converted (i.e., P–S
instead of S–P). The ‘‘–” sign indicates there is ‘‘No valid conclusion.” N indicates the
model predicts the ‘‘No valid conclusion” response. ‘‘J-L” indicates Johnson-Laird’s
definition.

P – M
S – M
S – P

M – P
M – S
S – P

P – M
M – S
S – P

(2) (3) (4)

Fig. 2. Syllogistic figures.
derive a logical conclusion. Their highly complicated parameter-
ized model was the first to qualitatively predict participants’
response patterns, and exhibited a good fit to the available data.



Fig. 3. Euler circles representing the relationships between two sets, X and Y.
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The idea of incorporating probability into a model of syllogistic
reasoning, which is normatively non-probabilistic, was later fol-
lowed by the probabilistic heuristics model (Chater & Oaksford,
1999), albeit this placed issues about the nature of mental repre-
sentations to one side. The indeterminate nature of mental repre-
sentations was also a key idea in the mental models theory
(Johnson-Laird & Bara, 1984; Johnson-Laird & Steedman, 1978),
but this model could not elicit quantitative predictions. As such,
the probability heuristics model and the mental model theory
appear to be mutually exclusive. The current theory based on prob-
abilistic representation is an intersection of these theories,
intended to provide a new integrated theory.

2. A theory of probabilistic representation

In this section, I present a model for syllogistic reasoning based
on probabilistic representations.3 This theory, unlike previous prob-
abilistic approaches, predicts people’s behavior in syllogisms based
on internal representations. The model’s two major assumptions
are (1) that probabilistic representations are constructed and (2) that
inferences are based on individual-based representations. The model
assumes that people reason by picturing a ‘‘probable” state of affairs
drawn from the premises of a syllogism instead of an exhaustive log-
ical scrutiny of propositions in the premises. The model also includes
three key conceptions: (1) minimal constraints on logical relations,
(2) a small number of samples, and (3) the informativeness of state-
ments. Each conception corresponds to one step of the model, as
detailed below.

2.1. Outline of the model

First, I briefly illustrate the conception of probabilistic inference
that was first introduced by Chapman and Chapman (1959). I then
attempt to reformulate this concept.

2.1.1. Probabilistic inference
Here, I introduce a sketch of a probabilistic inference, the heart

of the current theory. According to Chapman and Chapman (1959),
people regard the middle term of a syllogism as a common quality
or effect: people reason that ‘‘things that have common qualities or
effects are likely to be the same kinds of things, but things that lack
common qualities or effects are not likely to be the same” (p. 225).
For example, given the premises that ‘‘Some Practitioners are
Mediators” and ‘‘Some Sophists are not Mediators” (IO2), Sophists
and Practitioners are not likely to be considered the same kinds
of people, and thus ‘‘Some Sophists are not Practitioners” (O) is
falsely concluded by probabilistic inference.

I now provide a more formal explanation of my interpretation
of this idea. Logically speaking, there can be some individuals
who are both Sophists (S) and Practitioners (P), but not Mediators
(M); in fact, all individuals can be so (i.e., both S and P, but not M).
Therefore, the O-conclusion (shown above) must be rejected. How-
3 The model code (implemented in R, ver. 3.1.0 or later) together with all data used
in this article is available online (Hattori, 2016).
ever, people seem to infer that the probability that an individual
who is S but not M (warranted by the second premise) also hap-
pens to be P is very small; thus, the O-conclusion is not suppressed.
This view is justified as follows by the rarity assumption (Oaksford
& Chater, 1994). As the probability of S is small (i.e., rare), the prob-
ability that some arbitrary individual is S but not M is smaller.
Moreover, the probability of P is small (i.e., rare). Therefore, the
probability that an individual is S but not M and also P would be
much smaller. This means that the conclusion is hardly refuted,
or the conclusion has some probability of being endorsed. This
sketch instantiates how our (deductive) inference is affected by
probabilistic information. It shows how individual heuristics are
incorporated in a process of deduction, and also how an original
idea of probabilistic inference is linked to mathematical
probabilities.
2.1.2. Model assumptions and steps
The model has three major assumptions:

(1) The assumption of probabilistic representations: Models that
represent a state of affairs include probabilistic information,
which is sometimes logically incorrect.

(2) The assumption of individual-based representations: ‘‘Logical”
(i.e., discrete) inferences are made based on a finite number
of individual elements.

(3) The assumption of possibility: A logically possible (not neces-
sary) conclusion is derived based on the individual-based
representation.

According to the current theory, probabilistic information that
is essentially irrelevant to descriptions of the logical status or to
logical inferences will (inevitably) affect our deductive reasoning.
This is because the construction of probabilistic representations
precedes individual-based representations. Contrary to assump-
tion (1), most psychological theories on syllogistic reasoning, as
well as the ordinary Euler circle representation, do not distinguish
between two diagrams that are topologically identical.

The second point of the model is the process of assessing logical
relationships based on a limited number of individuals. The model
inherits the idea that a class is represented by limited number of
individuals from the mental model theory. The new model
assumes that we have difficulty thinking about many elements at
the same time because of working memory limitations. A logical
statement that is not inconsistent with the current finite sample
is assumed to be derived. I introduce the concept of random sam-
pling to connect these two assumptions.

The third point of the model is that we derive a statement as a
‘‘logical” conclusion if the statement tested is consistent with the
individual-based model that indicates a possibility (not the neces-
sity) of given premises (Evans, Handley, Harper, & Johnson-Laird,
1999). The test is conducted sequentially, and the informativeness
of statements affects the process. The model process in drawing a
conclusion from the premises of a syllogism is assumed to consist
of three steps:
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(1) Constructing a probability prototype model (PPM): Given a
syllogism, people construct a representative model with
minimal logical constraints other than those given by the
two premises. This model includes probabilistic information
about the occurrence of events.

(2) Constructing a sample mental model (SMM): Generating a
small number of data in accordance with the PPM, people
construct an SMM.

(3) Generating a logical conclusion: People sequentially (in
descending order of informativeness) examine which of
the quantified statements is consistent with the SMM, and
the first one that the model fulfills is chosen as the
conclusion.

2.1.3. An illustration
An outline of the model is schematized in Fig. 4. I now provide a

specific explanation of how the model behaves. In the case of AI2,
for example, the two premises are as follows:
Step 1 Probability Prototype Model (P
To construct a PPM that is not logically 
inconsistent with two premises.

Step 2 Sample Mental Model (SMM)
To construct a SMM generating n data in 
accord with the PPM.

Step 3 Logical Conclusion
To derive a logical conclusion that the SSM
fulfills.

1. “Some S are P”? → A
2. “No S are P”? → No 
3. ... 

0

S&M&P
S&M&¬P
S&¬M&P

S&¬M&¬P
¬S&M&P

¬S&M&¬P
¬S&¬M&P

¬S&¬M&¬P

0

S&M&P
S&M&¬P
S&¬M&P

S&¬M&¬P
¬S&M&P

¬S&M&¬P
¬S&¬M&P

¬S&¬M&¬P

x = .20
c = .90

All P are M
Some S are M

Random sampling
(sample genera�on)

Fig. 4. Outline of the mod
(1) All P are M
(2) Some S are M

The first premise causes people to assume the relationship
between P and M is like D1 in Fig. 3, and the second premise causes
them to assume the relationship between S and M is like D3. In
fact, the first premise is compatible with D0 and D1, and the sec-
ond premise is compatible with D0, D1, D2, and D3, but I regard
D1 and D3 as ‘‘standard” diagrams for each premise. In the first
step, combining two diagrams with minimal constraints, people
construct a PPM as shown in Step 1 of Fig. 4. This model assigns
probabilities for each area corresponding to 2� 2� 2 ¼ 8 possible
combinations of the truth values for S, M, and P.

The point here is that a probabilistic representation (PPM) is
constructed in advance before an individual-based mental model
(SMM). In this point, the probabilistic representation theory is
distinctive from other theories, including the latest extension of
mental model theory (Khemlani et al., 2015), as mentioned in
S M
P

.04 .14

.00

.02

.16
.64

PM)

 

ny individual that is S&P? → “NO”
individual that is S&P? → “YES”→ OUTPUT

S M
P

0.5 1

0.5 1

el: in the case of AI2.
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Section 1. The probability distribution that determines the proba-
bility value of each Euler circle area is defined by two parameters
(i.e., x and c) detailed later (Section 2.2.2) and the structural con-
straints given by logic.

In the second step, a comparatively small number of elements
(e.g., seven) within an SMM are randomly generated according to
the probability distribution defined in the PPM. So the logical sta-
tus of each element in a discrete mental model (i.e., SMM) is
derived from a random assignment based on a continuous proba-
bilistic representation (i.e., PPM). Reasoning processes based on
elements in a probable state of affairs are realized by Steps 1 and
2: hard-coded standard (not necessarily logical) relationships
among terms in the premises (Step 1) and probabilistic sampling
(Step 2).

Finally, people test the logical relationships of the SMM in terms
of S and P, and output their response. In this case, the first inspec-
tion is ‘‘Some S are P” (I), but the particular SMM exemplified in
Fig. 4 happens to be inconsistent with this statement, and the next,
‘‘No S are P” (E), is verified. Thus, the final statement is output as a
conclusion. In this procedure, the order of tests greatly affects the
model’s performance. The order is determined according to the
min-heuristic and the max-heuristic identified by Chater and
Oaksford (1999). This example outlines the behavior of the model.
I now describe the three steps of the model in detail.

2.2. Step 1: Constructing a probability prototype model

When engaging in syllogistic reasoning, we have to interpret
and represent two premises, and then integrate these representa-
tions into a single representation. As I mentioned in Section 1,
the problem of indeterminacy emerges in this encoding stage. I
assume this encoding is conducted following a law of simplicity:
(1) only one representative representation is adopted for each pre-
mise and (2) only one minimally restricted probabilistic represen-
tation is formed by combining two representations for premises.
Here, I explain the model’s specifications using Euler diagrams
for the sake of convenience, but note that the graphical represen-
tation is not essential for the modeling, and any other equivalent
representations, including some mental tokens (that must be
equipped with probabilities) could perform the same function.

2.2.1. Euler circle representations
Each quantifier, A, I, E, and O, corresponds to one or some Euler

circle representations, known as the Gergonne relations (Faris,
1955). An A-statement is compatible with Euler representations
D0 and D1 in Fig. 3. Likewise, I-, E-, and O-statements are compat-
ible with D0, D1, D2, and D3; with D4; and with D2, D3, and D4,
respectively. Let me define a standard Euler representation for each
quantifier from the view of minimal logical constraints. Probabilis-
tic constraints for D0 are PðX; �YÞ ¼ 0 and Pð�X;YÞ ¼ 0, and for D1 are
PðX; �YÞ ¼ 0 and Pð�X;YÞ > 0. The difference between D0 and D1 is
the constraint on the value of Pð�X;YÞ. D1 can be seen as having less
of a constraint than D0, because Pð�X;YÞ of D1 (i.e., a value greater
Fig. 5. Three possible combined Euler circles for AI2 when the two premises are D1 an
because it maximizes the independence.
than 0 and smaller than or equal to 1) has a much higher degree of
freedom than that of D2 (i.e., 0, which is a particular point on a
number line). The Euler circle with the highest freedom among
possible variations under the probabilistic constraints imposed
by a premise is called the standard Euler representation of the pre-
mise. According to this definition, the standard representation of I
is D3, because D3 is the least constrained diagram among the four.
Likewise, the standard representations of E and O are D4 and D3,
respectively. The idea of this standard representation is based on
the minimization of logical constraints, or maximization of
independence. Note that Stenning and Oberlander’s (1995) purely
logical detailed analyses provided similar results.

To draw a conclusion from two premises, the Euler circle repre-
sentations for the premises should be combined into one. In some
cases, however, several possibilities emerge at this stage. In such
cases, the least logically constrained representation is again
adopted. For example, as shown in Fig. 5, three Euler representa-
tions are possible for AI2 when combining D1 for the first premise
and D3 for the second premise. Among the three, we choose
Fig. 5-III as the standard representation, in which independence
between S and P conditioned by M can be assumed. That is, given
that the first premise imposes constraint PðMjPÞ ¼ 1, and the sec-
ond premise requires that PðS;MÞ > 0, the maximum freedom is
allowed between the end terms by assuming their conditional
independence (Chater & Oaksford, 1999; Pearl, 1988) given the
middle term, PðS;PjMÞ ¼ PðSjMÞPðPjMÞ. The conditional indepen-
dence is important for the probability heuristic models (Chater &
Oaksford, 1999) as it affects the p-validity of conclusions, and is
thus incorporated into the current theory although it does not
directly use p-validity. The standard Euler circle representations
for all syllogisms are shown in Fig. 6.

2.2.2. Assigning probabilities to Euler circles: two parameters
Next, we assign probabilities to each of the subsets of the Euler

circles. For this procedure, I again assume a law of simplicity. A
combination of three sets, S, M, and P, yields a maximum of
23 = 8 subsets, indicated by Arabic numerals 1–8 in Fig. 6 (see
the note in Table 2 for the correspondence between each numeral
and its logical status). I introduce the simplest policy that assumes
all terms have the same probability (expressed by a parameter x),
unless this violates the logical constraints of the premises, and they
retain maximal independence. First, the probability of the middle
term P(M) is assumed to be expressed by x:

x ¼ PðMÞ: ð1Þ
Unless the premise is A, S and P are allowed to have the same prob-
ability as M, and we can assume

PðSÞ ¼ x; ð2Þ
PðPÞ ¼ x: ð3Þ
When the premise is A, the probability is defined by a coverage
parameter c (0 < c 6 1). If the premise is ‘‘All X are M” (X stands
for S or P),
d D3 in Fig. 3. The probability prototype model (PPM) of AI2 is assumed to be III,
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(5) AI13 (AI1,3; AO1,3) (6) AI24 (AI2,4; AO2,4) (7) IA12 (IA1,2; OA1,2) (8) IA34 (IA3,4; OA3,4)

(9) AE13 (AE1,3) (10) AE24 (AE2,4) (11) EA12 (EA1,2) (12) EA34 (EA3,4)

(13) IE (IE*; OE*) (14) EI (EI*; EO*) (15) EE (EE*) (16) II (II*; IO*; OI*; OO*)

Fig. 6. PPM for each syllogism expressed by the Euler diagram. Each model corresponds to the syllogisms listed in parentheses. Asterisks in parentheses indicate the wildcard
(e.g., IE⁄ indicates IE1,2,3,4). S, M, and P indicate syllogistic terms and Arabic numerals indicate the logical status of the corresponding areas (e.g., 1 indicates S and M and P;
see the note to Table 2).
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PðXÞ ¼ cx: ð4Þ
Alternatively, if the premise is ‘‘All M are X,”

PðXÞ ¼ 1� cð1� xÞ: ð5Þ
The coverage parameter means that the overlap between X and M
grows as c approaches 1, and X completely coincides with M when
c = 1.

Second, joint probabilities for S, M, and P are defined as follows.
If the premise is A (‘‘All X are Y”), the logical constraint implies the
following relationship:

PðX; �YÞ ¼ 0: ð6Þ
Similarly, if a premise is E (‘‘No X are Y”), the following relationship
is implied:

PðX;YÞ ¼ 0: ð7Þ
The probabilistic interpretations of I (‘‘Some X are Y”) and O (‘‘Some
X are not Y”) would be PðX;YÞ > 0 and PðX; �YÞ > 0, respectively, but
these conditions do not constrain any assigned probability values.
Consequently, the two parameters, x and c, uniquely define proba-
bilistic representations for all syllogisms.

2.2.3. An illustration
Incorporating Eqs. (1)–(3) as assumptions and Eqs. (4)–(7) as

constraints imposed by logic, and allowing maximal independence
among terms, the joint probability distribution for S, M, and P can
be defined. Table 2 shows the joint probability distributions for all
types of syllogisms defined by this procedure. I now explain the
procedure of probability allocation using specific examples. In
the case of AA2, as the first premise is ‘‘All P are M,” P(M) = x and
P(P) = cx from Eqs. (1) and (4). According to the conditional inde-
pendence between S and P, PðS;PjMÞ ¼ PðSjMÞPðPjMÞ. Therefore,
P1 ¼ PðS;M;PÞ ¼ PðS;MÞPðP;MÞ

PðMÞ ¼ PðSÞPðPÞ
PðMÞ ¼ c2x, where P1 denotes

PðS;M;PÞ. P2; . . . ; P8 are also defined in Table 2. The PPM for AA2
(Fig. 6-2) indicates that P2 ¼ PðSÞ � P1 ¼ cx� c2x ¼ cð1� cÞx, and
P3 ¼ 0. Then, P4, P6, P7, and P8 are automatically derived as
described in the note in Table 2.

The next example is EE1. In this case, the PPM (Fig. 6-15) indi-
cates that P1 ¼ P2 ¼ P5 ¼ 0. As the conditional independence is also
maintained on the outside of M, PðS;Pj �MÞ ¼ PðSj �MÞPðPj �MÞ. There-
fore, P3 ¼ ðP3þP4ÞðP3þP7Þ

1�x ¼ x2
1�x, and the other probabilities (P4, P6, P7,

and P8) are fixed.
2.3. Step 2: Constructing a sample mental model

In this step, an individual-based mental representation is con-
structed using instances generated by a random sampling proce-
dure based on the probabilities defined by the PPM. Theoretically
speaking, if the number of instances generated approaches to infin-
ity, the logical relationship that the mental model satisfies coin-
cides with its original PPM’s logical relationship (i.e., the one
satisfied by the corresponding Euler circle shown in Fig. 6). That
is to say, ‘‘AE24” and ‘‘EA12” in Fig. 6 entail both E and O; ‘‘AA1”
entails both A and I; and the others entail both I and O.

However, if the number of instances is finite, and particularly if
it is small, the logical relationship in a PPM is not guaranteed in the
corresponding SMM. This is the point of the SMM. For example, in
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Fig. 7. Two examples of sample mental models (SMMs) for syllogism AE1.
Parameters alter the probability of each instance being generated. Equivalent
representations expressed by the notation of the mental model theory are shown in
the right portions.

Table 2
Probabilities of all subsets in each PPM.

No Name Type P(S) P(P)
P1 P2 P3 P5

PðS;M; PÞ PðS;M; �PÞ PðS; �M; PÞ Pð�S;M; PÞ
1 AA1 AA1 cx y cx 0 0 �cx
2 AA2 AA2 cx cx c2x c�cx 0 c�cx
3 AA3 AA3 y y x 0 �c2�x 0
4 AA4 AA4 y cx cx �cx 0 0
5 AI13 AI1,3; AO1,3 x y x2 0 �cx�x x�x
6 AI24 AI2,4; AO2,4 x cx cx2 �cx2 0 cx�x
7 IA12 IA1,2; OA1,2 cx x cx2 cx�x 0 �cx2

8 IA34 IA3,4; OA3,4 y x x2 x�x �cx�x 0
9 AE13 AE1,3 x y 0 0 �cx�x x
10 AE24 AE2,4 x cx 0 0 0 cx
11 EA12 EA1,2 cx x 0 cx 0 0
12 EA34 EA3,4 y x 0 x �cx�x 0
13 IE IE⁄; OE⁄ x x 0 0 x2 x2

14 EI EI⁄; EO⁄ x x 0 x2 x2 0
15 EE EE⁄ x x 0 0 x2=�x 0
16 II II⁄; IO⁄; OI⁄; OO⁄ x x x3 x2�x x2�x x2�x

Note. Parameters x and c indicate P(M) and degree of coverage, respectively (see text in detail). In this table, �x and �c stand for 1 � x and 1 � c, respectively; and y ¼ xþ �c�x.
Probabilities of other areas can be derived using values given in this table as follows:
P4 ¼ PðS; �M; �PÞ ¼ PðSÞ � P1 � P2 � P3.
P6 ¼ Pð�S;M; �PÞ ¼ PðMÞ � P1 � P2 � P5.
P7 ¼ Pð�S; �M; PÞ ¼ PðSÞ � P1 � P3 � P5.
P8 ¼ Pð�S; �M; �PÞ ¼ 1� P1 � P2 � P3 � P4 � P5 � P6.
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the case of ‘‘AE13” in Fig. 6, if c is nearly equal to 1, then M and P
largely overlap, and the probabilities of areas 3 and 7 are small.
This makes samples of conjunctive instances for S and P hard to
obtain, an I-conclusion becomes hard to derive, and an O- or an
E-conclusion is promoted. The sample size is assumed to be seven,
which is the approximate size of our working memory, unless
otherwise stated (as in Section 4.7). I now illustrate this
mechanism.

For AE1, if we assume x = 0.2 and c = 0.9, the probabilities of
areas 3, 4, 5, 7, and 8 (see the note in Table 2) would be 0.06,
0.14, 0.20, 0.02, and 0.58, respectively, according to Table 2. As a
result of sampling seven instances based on these probabilities,
assume we now have one instance in area 4, two in area 5, and four
in area 8, as shown in Fig. 7-I. This SMM can be represented in the
notation of the mental model theory, as shown in the right panel of
Fig. 7-I.4 In this model, as there is no instance that satisfies both S
4 The representation is not exactly the same as Johnson-Laird’s, because in this
paper I simplify the expression (without altering the number of models) as long as i
does not affect the conclusion. I have tried not to use the notation ‘‘0s” or ‘‘(s)” tha
appeared in their earlier papers, which indicate that it is uncertain whether or not the
relevant individual exists.
t
t

and P, an E- or an O-conclusion will be derived. Which of these is
derived depends on the procedure defined in the next step, where
a logical conclusion is generated (detailed in Section 2.4).

Alternatively, if we assume that x = 0.2 and c = 0.5 for the same
syllogism, AE1, the probabilities of areas 3, 4, 5, 7, and 8 would be
0.08,0.12,0.20, 0.32, and 0.28, respectively, according to Table 2.
Suppose that one, one, two, and three instances are obtained in
areas 3, 5, 7, and 8, respectively, based on random sampling, result-
ing in the SMM shown in Fig. 7-II. In this case, an A- or I-
conclusion, different from the previous case, will be derived.

2.4. Step 3: Generating a logical conclusion and its probability

Once an SMM has been constructed, the next step is to derive a
logical conclusion by examining the logical relationships between
S and P according to the samples in the model. In most cases, how-
ever, multiple statements would be compatible with an instance-
based model. Logically speaking, A implies I, and E implies O.
Therefore, both A- and I-conclusions, and both E- and O-
conclusions, are available in some cases. Moreover, in many cases,
I- and O-conclusions are not inconsistent with each other. There-
fore, the procedure for selecting a conclusion from multiple candi-
dates must be clarified to make a prediction of participants’
behavior.

2.4.1. Order of the tests
I assume an SMM is sequentially tested according to the infor-

mativeness of the syllogistic statements analyzed by Chater and
Oaksford (1999). The model incorporates two important heuristics
for forming the output from the probability heuristics model: the
min-heuristic and the max-heuristic. The min-heuristic is used to
define the order of testing at the final stage. This is expected to
realize an efficient procedure in which more probable candidates
would be tested earlier. It is intuitive that uninformative state-
ments can generally provide only a weak argument. In this sense,
the informativeness of syllogistic statements restricts the type of
valid conclusions. The min-heuristic in the probability heuristics
model is used to pick the least informative premise of the two as
a type of conclusion candidate. Chater and Oaksford (1999)
revealed that the order of informativeness of statements under
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the rarity assumption is I(A) > I(I) > I(E) > I(O), and this order is
adopted for testing in the probabilistic representation model.

In this model, the max-heuristic is applied at the very last
moment to output the conclusion. After determining a provisional
candidate conclusion in the above process, the probability of
adopting it as the final output (i.e., the degree of confidence in this
candidate as an actual conclusion) is defined by the type of quan-
tifiers of the premises according to the max-heuristic. The max-
heuristic in the probability heuristics model defines the degree of
confidence in the conclusion in proportion to the informativeness
of the most informative premise. Following this idea, in the prob-
abilistic representation model, the degree of confidence is set by
semi-fixed parameters (i.e., uA, uI, uE, and uO) defined by the most
informative premise (i.e., A, I, E, or O). In practice, the overall algo-
rithm of the model is as follows (see Fig. 8):

(1) Choose the least informative statement of the two premises
(i.e., the min-heuristic), and set this as the target mood of
the target statement to be tested.

(2) The given SMM is tested for consistency with the target
statement. The criteria for judgment are detailed below. If
the statement is validated, output it as a conclusion with a
probability defined by the max-heuristic parameters; other-
wise, go to (3).

(3) Choose the next most informative mood as the target to be
tested. If the mood to be tested reaches O, then go back to
A. If all four moods are exhausted, output N (i.e., ‘‘no valid
conclusion”) as the conclusion. Otherwise, return to (2).

In a series of consistency tests, if a candidate conclusion is nec-
essary for the targeted SMM, it is adopted as the conclusion. Put
another way, the criteria for testing the consistency of the SMM
are as follows:

(1) An A-conclusion is derived if there is not any individual that
is S but not P.
Start

X1

Conclude X1 X2

Conclude X2 X3

Conclude X3

Y
N

uY 1 uY

Y
N

uY 1 uY

Y
N

uY 1 u

Fig. 8. The process for generating a logical conclusion in the model. Logical conclusions
contents of the SMM), and a random effect prescribed by free parameters (uA, uI, uE, and
(2) An I-conclusion is derived if there is at least one individual
that is both S and P.

(3) An E-conclusion is derived if there is not any individual that
is both S and P.

(4) An O-conclusion is derived if there is at least one individual
that is S but not P.

2.4.2. Forming a probability distribution of responses
The model constructed as described above takes two premises

of a particular syllogism as input, and produces a conclusion of
A, I, E, O, or N as its output. The model simulates, a one-shot infer-
ence of a particular person. When the model is iteratively run a
considerable number of times, the total pattern of its output is
assumed to be a prediction for the result of an experiment that
considers a sufficient number of participants. The theoretical dis-
tribution of the frequency of responses is analytically derived from
a probability distribution defined by a PPM and the number of
samples as follows:

An A-statement, ‘‘All S are P” (S \ �P ¼ £), is consistent in an
SMM including n samples with the probability that there is no
sample in Areas 2 (S \M \ �P) and 4 (S \ �M \ �P) (see Fig. 6). The
probability that a sample is in Areas 2 or 4 is P2 þ P4, and the prob-
ability that no sample is in either area is 1� P2 � P4. As each sam-
ple is independent, the probability that n samples are neither in
Area 2 nor in Area 4 is ð1� P2 � P4Þn.

An E-statement, ‘‘No S are P” (S \ P ¼ £), is consistent in an
SMM with the probability that there is no sample in Areas 1
(S \M \ P) or 3 (S \ �M \ P), which is 1� P1 � P3. As for the A case,
the probability that n samples are neither in Area 1 nor in Area 3 is
ð1� P1 � P3Þn. An I-statement, ‘‘Some S are P” (S \ P–£), is consis-
tent if and only if its complement, ‘‘No S are P” (S \ P ¼ £), is
inconsistent. The probability of the latter is ð1� P1 � P3Þn, as
shown above, and the probability to be derived is
1� ð1� P1 � P3Þn. An O-statement, ‘‘Some S are not P” (S \ �P–£),
is consistent if and only if its complement, ‘‘All S are P”
X4

Conclude X4 Conclude NVC

End

Y

Y
N

uY 1 uY

Min-heuris�c:

Max-heuris�c:

{X1, X2, X3, X4} =

{A, I, E, O} if Min = A
{I, E, O, A} if Min = I
{E, O, A, I} if Min = E
{O, A, I, E} if Min = O

uY =

uA if Max = A
uI if Max = I
uE if Max = E
uO if Max = O

are determined by the order of the tests, the result of each test (depending on the
uO).
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(S \ �P ¼ £), is inconsistent. Therefore, the probability to be derived
is 1� ð1� P2 � P4Þn.
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Fig. 9. Mental model representations for syllogisms EA3 (upper) and EI3 (lower).
I, E, or O followed by an entailment symbol (�) indicate a conclusion consistent with
the model, and percentages indicate the mean choice rate in data used in Meta-
Analysis 2.
3. Mental representation and probability in other theories

In this section, I review how mental representation and proba-
bility, which are the two main issues of this paper, have been dealt
with in previous theories of syllogistic reasoning. I discuss the mer-
its and problems of some leading theories that involve at least one
of these ideas as their central concept.

3.1. Mental models

Themental model theory (Johnson-Laird, 1983; Johnson-Laird &
Bara, 1984; Johnson-Laird & Byrne, 1991; Johnson-Laird &
Steedman, 1978) is one of the earliest comprehensive psychologi-
cal theories of syllogistic reasoning. This theory explains human
performance in syllogistic reasoning based on mental representa-
tions. The mental model’s ‘‘crucial characteristics as far as infer-
ence is concerned are that a mental model is finite, computable,
and contains tokens in relations that represent entities in a specific
state of affairs” (Johnson-Laird & Bara, 1984, p. 4). Although this
characteristic is basically inherited, the current model is unique
in that it includes probabilistic information.5 For the mental model
theory, the number of elements in a mental model is not important,
as mental models ‘‘represent a set of entities by introducing an arbi-
trary number of elements that denote exemplary members of the
set” (Johnson-Laird, 1980, p. 98; italics mine).

As Johnson-Laird and Bara (1984) claim, the mental model the-
ory appears to predict the difficulty of syllogistic reasoning as a
function of the number of mental models that must be constructed
to derive a logically valid conclusion. For example, EA3 has two
premises, E (‘‘No P are M”) and A (‘‘All M are S”), and a valid
O-conclusion (‘‘Some S are not P”). EA3 is compatible with the
twomental models shown in the upper part of Fig. 9, which follows
the notation used by Johnson-Laird and Bara (1984).6 With Model 1
in the upper part of Fig. 9, E- and O-conclusions are compatible; with
Model 2, I- and O-conclusions are compatible. However, as E- and I-
conclusions are inconsistent with each other, the only statement
consistent with both models is the I-conclusion, which becomes
the final output (i.e., the correct answer). People who think of Model
1 but fail to construct Model 2 will derive an E-conclusion. As
predicted, half of the participants derived an E-conclusion in Exper-
iment 1 conducted by Johnson-Laird and Bara (1984) (and no-one
correctly derived an O-conclusion). A task that requires more models
to be constructed to reach a correct answer increases the probability
of mistakes in the inference process, and would thus be likely to
result in failure.

Although the mental model theory is one of the most influential
theories at the algorithmic/representational level in Marr’s (1982)
sense, its explanatory insufficiency is its most critical problem (see,
also, Bonatti, 1994; Ford, 1994; Garnham, 1993; Newstead, 1993;
Stenning & Oberlander, 1993; Wetherrick, 1993). When we assess
the descriptive validity of a model such as the mental model the-
ory, which assumes two steps, we need to know at least two pieces
of information for each step: (1) the conditions or procedures to
5 Whereas the mental model theory has been extended in various ways, and there
is a version that contains probabilistic information (Johnson-Laird et al., 1999
Khemlani, Lotstein, & Johnson-Laird, 2015), none of the basic models represen
information on probability or frequency, but instead represent purely logica
relationships, as in the case of the transitive-chain theory (see Section 3.2).

6 The original notation includes tokens like ‘‘0s,” but here I have simplified the
expression. Johnson-Laird and his colleagues treated EA3 as a three-model task, bu
the third model is not necessary unless we liberate the positions of S and P in the
conclusion. Therefore, only two models are shown here.

7 Johnson-Laird and Bara (1984) actually classified EI3 as a three-model syllogism
as they did EA3. See footnote 4.
;
t
l
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construct mental models like Models 1 and 2 (Fig. 9) and (2) the
procedures used to derive conclusions from the constructed mod-
els. The mental model theory (Johnson-Laird & Bara, 1984, pp. 35–
36), as for the probability heuristics model, assumes that one tries
to derive conclusions in decreasing order of informativeness
(A > I > E > O), and this assumption satisfactorily specifies proce-
dure (2) above. The mental model theory, however, is not specific
enough with (1). What if one constructs Model 2 first? One would
then derive an I-conclusion, which is actually a very rare response.
The mental model theory does not describe why one particular
model is constructed earlier than others when multiple models
are available. Although Johnson-Laird and Bara (1984) articulated
procedures for constructing alternative models (pp. 36–40) and
the number of models needed to derive logically correct conclu-
sions (pp. 52–59), they did not document which model would be
sought in what order, and what triggers the next search. Even
though, as claimed in their papers, the model is implemented in
a computer program, the problem is that the principles of priority
in the model construction have never been fully articulated,
including in the latest mental model paper on syllogisms
(Khemlani & Johnson-Laird, 2012).

The problem comes into focus when we compare one syllogism
with another, similar one. EI3 is a two-model syllogism,7 as shown
in the lower panel of Fig. 9. As in the case of EA3, E and O are com-
patible with Model 1, and I and O are compatible with Model 2. The
data (e.g., those used in Meta-Analysis 2), however, indicate a great
difference between these two types of syllogism. In EA3, the choice
rates for E, O, and N were 62%, 17%, and 19%, respectively, but were
24%, 37%, and 34% in EI3. The mental model theory cannot explain
this difference. Many similar instances of discordance can be found
among the data for pairs of syllogisms. For example, IA1 and EE2
are two-model syllogisms, neither of which have a valid conclusion
(N), but their correct conclusion rates differed greatly (17% vs. 77%).

Indeed, the mental model theory does not even precisely pre-
dict the difficulty of syllogisms. According to the mental model
theory, the difficulty of syllogisms is determined mainly by the
number of models and the figure, as mentioned above. However,
my analysis of the same data indicates that the negative correla-
tion between these variables is not particularly strong
(r = �0.61), and the proportion of correct conclusions for one-,
two-, and three-model syllogisms was 18–90%, 17–77%, and
11–50%, respectively. The worst one-model syllogism (AA3: 18%)
,
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was much worse than the best three-model one (EI1: 50%). It is
obvious that factors other than the number of models affect the
difficulty of syllogisms. Even considering the figural effect, which
is another important predictor according to Johnson-Laird and
Bara (1984), the result does not alter greatly. In the case of the
third figure, for example, the correct conclusion rates for one-,
two-, and three-model syllogisms ranged from 21% to 86%, 25%
to 77%, and 16% to 36%, respectively.
3.2. Probabilistic approaches

When Chapman and Chapman (1959) first introduced the idea
of probability, along with the idea of accepting the converse, into
the psychology of syllogistic reasoning, they assumed that people
do not think ‘‘all but strict deductive reasoning is disallowed” (p.
224), but instead tend to apply strategies that derive a probable
conclusion. After 40 years, this idea was refined and realized as
several heuristics by Chater and Oaksford (1999). The probability
heuristics model includes three heuristics (G1–3) for generating
conclusions from given premises and two heuristics (T1–2) for
testing the conclusions generated. Among these, the most impor-
tant are the min-heuristic (G1) and the max-heuristic (T1). The
min-heuristic determines a candidate conclusion. The less infor-
mative form of the two premises is chosen as the form of a candi-
date conclusion. For example, in the case of EA3, Chater and
Oaksford’s analysis indicates that an E-conclusion will be chosen
under the rarity assumption, as the ordering of informativeness
is A > I > E > O. The max-heuristic determines the degree of confi-
dence in the conclusion (i.e., the selection rate of the conclusion
as an answer). The most informative premise makes the conclusion
confident (raises its probability of being selected) to the extent of
its informativeness.

Chater and Oaksford (1999) demonstrated that the heuristics
they specified could be used as an effectual strategy to derive an
appropriate (i.e., p-valid, in their terms) conclusion. If a strategy
is useful in determining the correct answer, it can be a good heuris-
tic. Moreover, if it is simple and easy to use, it is a highly efficient
heuristic. This is a sufficient condition for a model. Their ingenious
analysis based on probability theory showed that the heuristics
they proposed were justified from an ecological point of view. They
also showed, in parallel, that their model provided a good fit to the
available data. In other words, the probability heuristics model also
satisfied a necessary condition. It is also true, however, that the
probability heuristics model is not fully satisfactory as a psycho-
logical theory: it has little to say about howmental representations
work in the process of syllogistic reasoning. It fits the data in hand
well, but does not account for the behavior in terms of mecha-
nisms, i.e., the model ‘‘does require semantic representations that
capture people’s understanding of syllogistic premises” (Chater &
Oaksford, 1999, p. 236).

With regard to the topic of symmetry inference, both the prob-
ability heuristic model and the mental model theory sometimes
fail to explain the phenomenon known as conversion. In both
AA1 and AA3, for example, the min-heuristic enforces an A-
conclusion, and the max-heuristic enhances the confidence of the
conclusion in exactly the same way. Neither does the mental
model theory distinguish between these types: both AA1 and
AA3 are predicted to provide high proportions of correct answers,
because both are one-model syllogisms (Johnson-Laird & Bara,
1984).8 In this regard, the probability heuristics model and the men-
tal model theory are both unsatisfactory.
8 AA3 was later reclassified as a two-model syllogism, and then much later as a
three-model syllogism, without any reason. This was pointed out and criticized by
some researchers (e.g., Ford, 1994; Wetherrick, 1993).
The transitive-chain theory (Guyote & Sternberg, 1981), which
followed from Erickson’s (1974, 1978) set analysis theory, is the
one of the earliest frameworks that can quantitatively predict
response patterns. It preceded the probability heuristics model
by about two decades, but was ignored by Chater and Oaksford
(1999). The transitive-chain approach is equipped with both men-
tal representations and probability. I should point out, however,
that the representation on which these theories are based is purely
logical, as is the case for the mental models theory. Continuous
parameters, or probabilities, were not introduced into the repre-
sentations themselves, but into the procedure for handling (i.e.,
constructing or combining) logical representations. Therefore, for
example, these models scarcely consider whether people’s repre-
sentations have a balanced structure (Fig. 1). As a result, the
transitive-chain model finds it difficult to directly handle represen-
tational changes caused by semantic factors, including the content
effect, as does the probability heuristics model.
3.3. Summary

Mental models theory could be a promising account of internal
mental representations used in syllogistic reasoning, but it suffers
from a lack of specification, even in its latest form, leaving us desir-
ing more detailed documentation and justification of the model’s
behavior. The probability heuristics model shows how effective
probabilistic approaches are, even for logical tasks, but is not yet
fully satisfactory, given that the nature of the heuristics is not
explained in relation to mental representations. Although other
theories such as set analysis theory and transitive-chain theory
incorporate probability into their models, no theory has, until
now, introduced the idea of probabilistic representations into syl-
logistic reasoning.

Although there have been several attempts to compare existing
theories of syllogistic reasoning, including the mental model the-
ory and the probability heuristic model, the method of evaluation
varies considerably, and the results diverge: some studies found
the probability heuristics model to be superior (Chater &
Oaksford, 1999; Copeland, 2006), whereas others did not
(Copeland & Radvansky, 2004; Khemlani & Johnson-Laird, 2012).
Therefore, we need a comprehensive comparison of these models
together with the probabilistic representation model.
4. Evaluation of the proposed model

The descriptive validity of the proposed model in predicting
response patterns was assessed using actual experimental data.
For the purpose of constructing a comprehensive theory, it is insuf-
ficient, albeit important, to examine whether or not a particular
model predicts a particular type of syllogism, as I have done in
the previous section. It is more important to evaluate the overall
descriptive validity of models using an identical reasonable stan-
dard as inclusively as possible. Hence, I now evaluate the proba-
bilistic representation model, in comparison with other signal
models, in terms of how well it explains existing data as a whole
from both quantitative and qualitative perspectives.9

Below, in Meta-Analysis 1, I compare the current model with
other existing models that can predict the proportions of each con-
clusion type (i.e., A, I, E, and O) for each of 64 syllogisms. At pre-
sent, only the probability heuristics model and transitive-chain
theory provide such predictions. In this analysis, for fair compar-
ison, I use the same data that the proponents of each model used
to evaluate their own models. In Meta-Analysis 2, I conduct a more
9 See Hattori (2016) for data used in Meta-Analyses 1, 2, and 3; and Experiments 1
and 2.



Table 3
Probabilities of constructing mental models as parameters of the p-mental model.

Syllogism
Successful (up to)

Unsuccessful
1st 2nd 3rd

One-model P1M1 � � 1� P1M1

Two-model P2M1 P2M2 � 1� ðP2M1 þ P2M2Þ
Three-model P3M1 P3M2 P3M3 1� ðP3M1 þ P3M2 þ P3M2Þ
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inclusive comparison using data from the literature: using the
same set of extended datasets, all models were evaluated accord-
ing to an identical standard. To make this comparison possible,
the mental model theory is extended in line with the original idea
to allow it to make quantitative predictions. After these compar-
isons, I examine how the model explains known qualitative phe-
nomena in syllogistic reasoning, including immediate inference,
Gricean interpretation, conversion, and figural effects. Thus, I
reveal how the theory links syllogistic reasoning to other cognitive
processes.

4.1. Meta-Analysis 1

The purpose of this analysis is to examine how well the current
model performs on the same datasets used by previous models.
The probabilistic representation model was compared with the
probability heuristics model and the transitive-chain model. For
the current model, predictions were derived by estimating the
parameters that gave the best fit to the given data. These estimates
were optimized by a quasi-Newton method using the ‘‘optim”
function on R version 3.1.0 with ‘‘L-BFGS-B” options (Byrd, Lu,
Nocedal, & Zhu, 1995). In this analysis, the goodness-of-fit was
basically evaluated by Akaike’s Information Criterion (AIC). A smal-
ler score represents a better fit to the data. The AIC score was
derived from the sum of the squared deviations of all (i.e., usually
64) syllogisms regarding a mean square deviation (MSD) of the
choice rate for all five options (i.e., A, I, E, O, and N) as a respective
square deviation of each syllogism. The root mean square deviation
(RMSD) and Pearson’s correlation coefficient (r) were also derived
as indices of goodness-of-fit, as these are useful when two models
have the same number of parameters. First, the predicted choice
rate of each answer (including N, i.e., ‘‘No valid conclusion”) for
each syllogism was derived from a model. Next, MSD, RMSD, and
r were calculated for each syllogism from the choice rate distribu-
tion.10 Finally, the weighted average of the 64 (or fewer, depending
on the experimental material) measure of each index was calculated.
The weighting considered the number of participants (via Fisher
transformation in the case of r).

4.1.1. Probability heuristics model
Chater and Oaksford (1999) evaluated their model using five

experiments (a total of N = 10111). The current model was fitted
to the same dataset, and the results were compared with their pre-
dictions (Chater & Oaksford, 1999, pp. 247–248). The fit of the cur-
rent model and the probability heuristics model was equally good,
with almost no differences: AIC = 17.7 vs. 17.9, RMSD = 0.829 vs.
0.824, respectively; and the correlation coefficient was almost the
same: rs = 0.973 for both. Parameter values for the current model
were as follows (those for the probability heuristics model are
10 The evaluation of the goodness-of-fit may be different from that in the meta-
analysis of Chater and Oaksford (1999), who did not provide details of their method
The original probability heuristics model study does not provide proportions of N, and
so these have been calculated by subtracting the proportions of A, I, E, and O from
100%.
11 The virtual number of participants in Dickstein’s (1978) Experiment 2 was treated
as N = 19 here (actual N = 76), because each participant considered only one of four
figures (a total of 16 out of 64 syllogisms) in this experiment.

12 Confusingly, the notation of syllogistic reasoning differs considerably between
papers following the traditional approach, including in the current article and papers
by Johnson-Laird and his colleagues. For example, ‘‘conclusion I0 from syllogism AI1”
corresponds to ‘‘conclusion Iac from syllogism AI2” in Table 7 of Khemlani and
Johnson-Laird (2012).
.

shown in the above paper): x = 0.464, c = 0.895, uA = 0.824, uI = 0.492,
uE = 0.280, uO = 0.285.

4.1.2. Transitive-chain model
In the same way, the data from Experiment 1 (N = 49) of Guyote

and Sternberg (1981) were used to compare the probabilistic rep-
resentation model and the transitive-chain model. The former
model predicts data with only five parameters (omitting one), as
these data include only 45 out of 64 syllogisms, whereas the latter
model has seven. The results show the superiority of the current
model, considering the number of parameters: AIC = 13.8 vs. 16.6
(with parameter values x = 0.499, c = 0.837, uA = 0.872, uI = 0.720,
uE = 0.131), while the actual fit of the transitive-chain model was
slightly better: RMSD = 0.077 vs. 0.046; r = 0.979 vs. 0.994,
respectively.

4.2. An extension of the mental model theory: a parameterized model

Given that the mental model theory is currently the most com-
prehensive and representative theory of mental representations, it
is important to compare its predictions with those made by the
current theory. Unfortunately, however, this theory does not pre-
dict responses to syllogisms as a distribution of conclusion types,
even in its latest form accounting for probabilistic reasoning (i.e.,
Khemlani et al., 2015), and it is thus impossible to compare the
two models directly. Therefore, I constructed a parameterized
model based on the idea of the original theory (the ‘‘p-mental mod-
el” for short).

In the mental model theory, the core machinery that generates
variations in response patterns is the search for alternative models.
Because each mental model searched is causative of particular
response types, it is comparatively easy to construct a generative
model for response variations. Several parameters that define the
probabilities of the constructed models are listed in Table 3. For
instance, in a two-model syllogism, the probability that people
construct only one model (and fail to provide the correct answer)
is P2M1, and the probability that people construct the appropriate
two models (and respond successfully) is P2M2; the probability of
other errors in the process of model construction is 1 �
(P2M1 + P2M2).

I now illustrate how the p-mental model behaves using an
example. In the case of AA2, which is defined as a two-model syl-
logism, the first mental model derives A, A0, I, and I0, according to
the mental model theory (Johnson-Laird & Bara, 1984; Khemlani
& Johnson-Laird, 2012).12 Here, the prime symbol (e.g., A0) indicates
the order in which end terms in the conclusion are converted (e.g.,
‘‘All P are S”) from the Aristotelian traditional order (e.g., ‘‘All S are
P”). See Appendix A and Table A.1 for details on this topic.

If a participant only constructs the first mental model, but fails
to search the second model, the model predicts that an A- or
A0-statement will be output. I assume here that the p-mental



Table 4
Results of Meta-Analysis 2 for data from eight experiments and of experiments 1 and 2.

ID Study Experiment N
PRM PHM pMM

RMSD r AIC RMSD r AIC RMSD r AIC

D78-1 Dickstein (1978) Expt 1 22 0.090 0.970 17.93 0.095 0.980 19.47 0.125 0.980 22.53

D78-2 Dickstein (1978) Expt 2 19 0.093 0.961 18.18 0.090 0.968 18.40 0.121 0.926 21.51

JS78-2.1 Johnson-Laird and Steedman (1978) Expt 2, 1st 20 0.103 0.978 19.97 0.106 0.971 20.72 0.119 0.968 21.25

JS78-2.2 Johnson-Laird and Steedman (1978) Expt 2, 2nd 20 0.116 0.981 23.24 0.119 0.980 24.63 0.126 0.987 23.72

GS81-1 Guyote and Sternberg (1981) Expt 1 49 0.077 0.979 13.78 0.122 0.952 18.69 0.116 0.969 19.44

JB84-3 Johnson-Laird and Bara (1984) Expt 3 20 0.143 0.945 24.71 0.130 0.934 22.60 0.143 0.944 23.66

BBJ95 Bara, Bucciarelli, and Johnson-Laird (1995) Adults 20 0.153 0.914 25.39 0.134 0.938 22.83 0.134 0.961 22.85

RNG01 Roberts et al. (2001) – 56 0.106 0.952 20.02 0.084 0.971 17.66 0.106 0.930 19.35

Weighted average – 226 0.105 0.965 19.48 0.107 0.965 20.33 0.122 0.960 21.43

Exp-1 Experiment 1 88 0.090 0.959 8.08 0.133 0.942 8.17 0.102 0.976 14.15

Exp-2 Experiment 2 50 0.113 0.931 10.37 0.122 0.923 10.42 0.105 0.978 14.35

Note: PRM, PHM, and pMM indicate the probabilistic representation model, the probability heuristic model, and the new parameterized model based on mental model theory,
respectively (see text). The underlined numbers indicate the best fit models. RMSD: root mean square deviation, r: Pearson’s correlation coefficient.

3 The effect of this modification on the target datasets is actually quite small, and
e conclusions are not altered if they were treated as missing values: the average
ifference in the percentage of all response rates in terms of RMSD was 2.3, 1.4, 3.8,
.2, and 2.1 for BBJ95, JB84-3, JS78-2.1, JS78-2.2, and RNG01 in Table 4, respectively.
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model dismisses an I-type answer because, logically speaking, any
A-statement implies the corresponding I-statement, and the for-
mer is always more informative than the latter. This is consistent
with a common observation that very few people actually give
an I-type answer when an A is available. In the same way, as the
same relation exists between A0 and I0, E and O, and E0 and O0, I
make the same supposition with regard to I0, O, and O0.

Otherwise, if a participant successfully constructs the second
mental model, the p-mental model predicts that an N (‘‘No valid
conclusion”) will be output, because the second model is consis-
tent with E, E0, O, and O0, and it refutes A and A0, one of which
has been derived at the previous stage of the first mental model.
Therefore, A or A0 is derived with probability P2M1, and N is derived
with probability P2M2. Other errors occur with probability
PE ¼ 1� P2M1 � P2M2. For simplicity, the frequencies of other errors
are assumed to be distributed uniformly across all incorrect
responses. Consequently, when the options are A, I, E, O, and N,
the predicted selection rates are P2M1, PE=3, PE=3, PE=3, and P2M2,
respectively.

The number of mental models and the conclusions derived by
each are listed in Table 1. The former is based on Johnson-Laird
and Bara (1984, Table 9–12), although there have been some crit-
icisms on this topic (e.g., Ford, 1994; Wetherrick, 1993); the latter
is based on Khemlani and Johnson-Laird (2012, Table 7).

4.3. Meta-Analysis 2

It may be considered unsatisfactory that Meta-Analysis 1 did
not compare models simultaneously using the same datasets and
the same single standard. Here, I compare three models under such
conditions: the mental model theory as the most representative
model based on internal representations, the probability heuristics
model as the most influential probabilistic model, and the proba-
bilistic representation theory as a promising integrated approach.

4.3.1. Method
The basic method of evaluation was the same as for Meta-

Analysis 1, except for the following two points: all models were
compared on the same extended datasets, and all models adopted
the parameter estimation method described in Section 4.1. To
obtain experimental data on syllogisms that provide the propor-
tion of each response as a syllogistic conclusion (i.e., A, I, E, O, or
N), I excluded data from experiments that used non-adult partici-
pants, that examined too few syllogism variations (less than half of
the 64), and that did not have people derive a conclusion but
instead had them examine the validity of each type of conclusion
in a yes/no format (e.g., Rips, 1994). As a result, the set of eight
experiments (with a total of N = 226) shown in Table 4 were cho-
sen as the target of this analysis. This set is more inclusive than
the data targeted in previous studies, including Chater and
Oaksford (1999) and Khemlani and Johnson-Laird (2012).

Before the analysis, some datasets were slightly modified to
adapt to the assumption of the models that the sum of all
responses is 100%. In some experiments (JS78-2.1, JS78-2.2, JB84-
3, BBJ95, and RNG01 in Table 4), in which participants did not
make a choice from the given options but generated their own con-
clusion, the authors did not report the proportion of a few minor,
unexpected responses. In such cases, data were complemented
with N answers, as it is reasonable to assume that if a set of options
were given to them, such participants would not have found any
appropriate answer other than N.13 Although participants in a gen-
eration task are not constrained by the order of terms in the conclu-
sion (i.e., they can generate either an S–P or P–S conclusion), the
difference was ignored in this analysis (following some predecessors,
e.g., Chater & Oaksford, 1999) because some preliminary analyses
indicated that the distinction has little effect on the results.

4.3.2. Results and discussion
First, to intuitively understand the goodness-of-fit of the cur-

rent model, I drew graphs indicating the relation between the
actual data and model predictions for each syllogism. The results
are shown in Fig. 10. These data are the integrated set from the
eight experiments taken from the literature. Although it is not ideal
to simply total up all data, I thought this would be useful to grasp
the overall fitness of the model, which is revealed to be quite good.
Considering the difference in some aspects of the experimental
method among studies including the population of participants,
each model should be fitted to data from an individual experiment
first, and then the results should be integrated by model to enable
comparison. All other results described below are from such
analyses.

Table 4 summarizes the results. The weighted average of AIC in
Table 4 indicates that the probabilistic representation model pro-
duced the best performance (19.48), followed (albeit at a narrow
margin) by the probability heuristics model (20.33) and the
1

th
d
1



Table 5
Model parameters estimated for data from eight experiments in the literature and two new experiments (Meta-Analysis 2 and experiments 1 and 2).

ID
PRM PHM pMM

x c uA uI uE uO PA PI PE PO Pent Perr P1M1 P2M1 P2M2 P3M1 P3M2 P3M3

D78-1 0.478 0.905 0.897 0.525 0.189 0.210 0.806 0.398 0.178 0.152 0.050 0.006 0.930 0.392 0.578 0.298 0.295 0.401
D78-2 0.430 0.916 0.883 0.524 0.298 0.326 0.715 0.358 0.198 0.214 0.110 0.023 0.900 0.352 0.495 0.366 0.323 0.281
JS78-2.1 0.474 0.901 0.750 0.402 0.216 0.107 0.700 0.314 0.192 0.084 0.029 0.003 0.875 0.292 0.679 0.334 0.359 0.296
JS78-2.2 0.472 0.780 0.778 0.220 0.223 0.001 0.731 0.169 0.217 0.001 0.018 0.002 0.881 0.194 0.786 0.280 0.272 0.448
GS81-1 0.499 0.837 0.872 0.721 0.131 – 0.723 0.378 0.119 0.200 0.086 0.012 0.887 0.621 0.313 0.250 0.312 0.398
JB84-3 0.477 0.999 0.701 0.423 0.180 0.308 0.664 0.382 0.156 0.290 0.059 0.006 0.825 0.376 0.523 0.550 0.398 0.053
BBJ95 0.467 0.987 0.811 0.509 0.235 0.391 0.715 0.429 0.186 0.409 0.077 0.018 0.883 0.419 0.500 0.536 0.296 0.101
RNG01 0.465 0.979 0.841 0.643 0.408 0.601 0.733 0.519 0.307 0.485 0.083 0.026 0.831 0.494 0.329 0.565 0.237 0.163

All 0.473 0.914 0.828 0.548 0.248 0.342 0.726 0.394 0.202 0.266 0.070 0.014 0.873 0.391 0.514 0.419 0.302 0.253

Exp-1 0.499 0.805 0.832 – – – 0.673 – – – 0.114 0.019 0.832 0.560 0.274 0.386 0.324 0.176
Exp-2 0.485 0.779 0.788 0.542 – – 0.560 0.377 – – 0.183 0.021 0.560 0.377 0.200 0.200 0.183 0.021

Note: The top row indicates models and the ID indicates studies (see note to Table 4).
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Fig. 10. Fit of the model to integrated data from eight experiments in the literature. Bars indicate data and lines indicate model predictions. Dark gray bars indicate valid
conclusions. Numerical values in each figure indicate RMSD (d) and Pearson’s correlation coefficient (r).
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p-mental model (21.43). As all of the models compared here
actually have the same number of parameters (i.e., six), the RMSD
and r values can also be compared with one another. These alterna-
tive criteria converge to the same conclusion. Considered together,
the fact that the probabilistic representation model scored best in
five out of eight experiments in terms of AIC and was superior in
terms of the other indices implies that it is the best overall model.

The parameter estimation results presented in Table 5 are also
supportive of the proposed model. One of the merits of this model
is that, unlike the other models, the meaning of parameters is clear
in terms of cognitive processes. First, the coverage parameter c
reflects how strongly people maintain the balancing principle in
the task. The weighted average estimation was c = 0.914. This
means that when people process A-type statements, it is highly
probable that they implicitly assume that its conversion is also
true. More precisely, a statement ‘‘All X are Y” leads to the assump-
tion that ‘‘More than 90% of Y are X.” This result is totally consistent
with the set-size balancing hypothesis (Hattori & Nishida, 2009;
Hattori & Oaksford, 2007).

Second, parameters uA, uI, uE, and uO reflect the max-heuristic.
According to the analyses of Chater and Oaksford (1999), the
max-heuristic predicts that the confidence in a conclusion should
be in accord with the expected informativeness of the syllogisms
with the different max premise types: EI(A) = 1.99, EI(I) = 0.76, EI
(E) = 0.00, and EI(O) = 0.05, resulting in the order A > I > O > E.
Again, most of the parameter estimation results in Table 5 agree
with this prediction: uA > uI > uO > uE.

4.4. Immediate inference and Gricean interpretation

Although we have seen that the probabilistic representation
model outperformed other signature models in quantitative evalu-
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ations, it is not yet clear whether the model’s predictions are com-
patible with the findings revealed by previous studies on syllogistic
reasoning. It is also worth analyzing, in some qualitative way,
whether the model predicts several well-known characteristics of
people’s performance in syllogistic reasoning. I commence such
analyses pragmatically, leaving the content effect to be considered
in a later section of experiments (Section 5).

A view known as the Gricean interpretation of syllogistic quanti-
fiers (e.g., Begg & Harris, 1982; Erickson, 1974; Newstead, 1995;
Newstead & Griggs, 1983; Roberts, Newstead, & Griggs, 2001) par-
tially provides the rationale for the model assumptions. The PPM of
the probabilistic representation model for two propositions of a
syllogism (Fig. 3) postulates the one-to-one correspondence
between syllogistic statements and the Gergonne relations. Logi-
cally speaking, however, the correspondence is one-to-many, as
mentioned in Section 2.2.1. In this sense, the model’s correspon-
dence assumptions about A-, I-, and O-statements violate the rules
of mathematical logic. In conversation, ‘‘Some X are Y” implies
‘‘Some X are not Y,” because we take it for granted that if the
speaker knows ‘‘All X are Y,” they would say so. Grice’s (1975)
maxim of quantity, which states that speakers should be as infor-
mative as possible, would reject D0, D1, and D2 in Fig. 3 as a rep-
resentation of an I-statement (‘‘Some X are Y”), and the
representation is also shared by the corresponding O-statement
(‘‘Some X are not Y”).

Evidence in support of the model’s representation can be found
in experiments using something called an immediate inference task.
Newstead and Griggs (1983) tested people’s immediate inference
from a single sentence of syllogistic premises to investigate the
interpretation of quantifiers. In their experiments, participants
were given a statement like ‘‘All of the Ms. are Zs,” and were asked
to judge whether each of eight statements (e.g., ‘‘Some of the Zs are
not Ms”) followed logically from the given statement. Among four
kinds of inferences they classified, the worst one was subcontraries
(the other three were contradictory, contrary, and subaltern infer-
ences): the majority of people falsely inferred that a true
I-statement (‘‘Some X are Y”) or a true O-statement (‘‘Some X are
not Y”) implies the truth of the other. This result is consistent with
the probabilistic representation model. If we represent an
I-statement by D3 in Fig. 3, then the corresponding O-statement
is also true on the same representation (D3), and vice versa.

In the same experiments (Newstead & Griggs, 1983), about half
of the participants (42% of TF questionnaire group in Experiment 1,
and 57% in Experiment 2, respectively) judged a true A-statement
(‘‘All X are Y”) to imply the truth of the converted O-statement
(‘‘Some Y are not X”). It is possible to interpret this result as sug-
gesting that, according to a discrete view, half of the participants
represented the A-statement as D1 and the other half represented
it as D0. The result, however, is also compatible with another inter-
pretation with a continuous view: most participants originally had
a D1 representation as a prototype, but as the two representations
in D1 almost overlap with each other (c � 1), about half of them are
barely distinguishable from the case of D0.

More recently, Roberts et al. (2001) revealed that it is not Gri-
cean interpretations alone that explain syllogistic reasoning data,
but also reversible Gricean interpretations, which suggests a mixed
strategy of accepting the converse (Chapman & Chapman, 1959)
and Gricean interpretations. The reversible Gricean interpretation
is similar to the PPM of the probabilistic representation model.
The only difference is that the former postulates that A is D0,
whereas the latter assumes that A is D1. Roberts et al. (2001) admit
that simple inference tasks and syllogistic reasoning tasks need not
be approached in exactly the same way (p. 176). Importantly, how-
ever, according to the probabilistic representation theory, there is
no dissociation between simple inference tasks and syllogistic rea-
soning tasks. The model is compatible with all the data: Gricean
interpretations, immediate inferences, and syllogistic reasoning,
including the principle of accepting the converse that I now
discuss.
4.5. Conversion as symmetry inference

As I noted earlier (Section 1), conversion is a form of symmetry
inference, in which the current theory is especially interested. Illi-
cit conversion (Chapman & Chapman, 1959; Sells, 1936; Wilkins,
1928) has received special attention from many theorists (e.g.,
Ceraso & Provitesa, 1971; Dickstein, 1978; Erickson, 1978;
Newstead, 1989; Revlin & Leirer, 1978; Revlis, 1975a, 1975b;
Roberts et al., 2001). Newstead (1989) concluded that ‘‘syllogistic
reasoning errors are caused by misinterpretation of the premises”
and ‘‘[c]onversion theory in particular seems to play an important
part” (p. 91). In the latest extensive review of syllogistic theories,
Khemlani and Johnson-Laird (2012) concluded that the illicit con-
version theory correctly rejects participants’ nonresponses better
than any other theory. This means that this idea precisely captures
a part, though not all, of people’s behavior in syllogistic reasoning.
Thus, I now examine how probabilistic representation theory is
compatible with this phenomenon in two ways. One is empirical,
and the other is theoretical.

First, I conducted a further analysis of Meta-Analysis 2 (Sec-
tion 4.3) using the same data from eight experiments in the litera-
ture. Illicit conversion can be seen as emerging from the set-size
balancing principle. If all the terms in a syllogism have the same
probability, the relationship between any two terms becomes
‘‘symmetrical.” As a result, conversion is no longer illicit. In the
probabilistic representation model, the degree of balance is real-
ized by the coverage parameter c = 1. In Meta-Analysis 2, the esti-
mated values of this parameter suggest that the principle was
largely maintained in the experiments. Here, apart from the best
estimates, the robustness of this assumption is examined in view
of how the variation in x and c affects the goodness-of-fit of the
model. First, the model was fitted to the integrated data from the
eight experiments, and the six parameters (i.e., x, c, uA, uI, uE, and
uO) were estimated. Next, the model’s goodness-of-fit was calcu-
lated for each of a 20 � 20 grid of parameters x and c while the
other parameters were held constant. Fig. 11 illustrates the results.
We can see that the most likely estimate for c is always close to 1,
no matter what the value of x. This suggests that the evidence for
the balancing principle is robust.
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Second, I analyzed what parameters of the probabilistic repre-
sentation model make it compatible with the conversion theory.
According to Chapman and Chapman’s (1959) principles, if there
is at least one valid conclusion in the four syllogisms that have
the same mood but different figures, participants tend to derive
one of the valid conclusions. For the sake of simplicity, I assumed
that if multiple conclusions were available by conversion, the most
informative one would be adopted as a conclusion (i.e., in the order
A > I > E > O), following the analyses of Chater and Oaksford (1999).
For example, although the only logically correct answer of AA3 is I,
conversion makes a more informative A conclusion available, and
so A was assumed to be the answer predicted by conversion the-
ory. Conversion theory predicts a particular answer for only 32 syl-
logisms, including four figures of AA, AI, IA, AE, EA, AO, OA, and EI.
Comparing the model’s predictions with those given by conversion
theory, the rate of concordance among 32 syllogisms was plotted
as a function of x and c (see Fig. 12). The results indicate that the
conversion phenomenon is frequently observed (>85%) when
c > 0.9 and x > 0.25 (approximately).

This result may not be of great surprise given that the two sets
are identical when they maximally overlap under the constraint of
the same set size. The important point is that this result enables us
to make new predictions: when x and c are not in this area (i.e.,
the balancing principle is violated), conversion will no longer
be observed. This will be examined in Section 5 (Experiments 1
and 2).

Finally, note that conversion makes the difference in the syllo-
gistic figure (Fig. 2) ambiguous. As a result, conversion theory does
not account for the figural effect discussed below, and this is one of
the disadvantages of this theory, contrasting with the probabilistic
representation theory.
4.6. Figural effect

Many theorists have mentioned that differences in the figure
(see, Fig. 2) can affect the difficulty of syllogistic reasoning (e.g.,
Dickstein, 1978; Erickson, 1974; Espino, Santamaria, & Garcia-
Madruga, 2000; Frase, 1966; Johnson-Laird & Steedman, 1978;
Stupple & Ball, 2007). Generally, figure 1 is easiest and figure 4 is
the most difficult. Frase (1966) reported this effect half a century
ago. His experiments, which used 44 syllogistic yes/no questions
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Fig. 12. The rate of agreement in predictions of conclusions as people’s responses
between theories of the probabilistic representation and illicit conversion.
consisting of 11 syllogistic moods (IA/O, IA/E, AI/E, AO/I, IE/I, II/I,
EA/I, AE/I, EE/I, OE/O, and EI/O) and four figures, found that partici-
pants made the fewest errors on figure 1 syllogisms and the most
errors on figure 4 syllogisms. Using 19 valid syllogisms (see Table
1), Erickson (1974) obtained a similar experimental result.
Dickstein (1978) expressed caution about confounding factors
including illicit conversion (Chapman & Chapman, 1959), and
reached the same conclusion through careful analyses of screened
syllogisms (i.e., EI and IE). A similar claim was made by Johnson-
Laird and Steedman (1978), who ran experiments in which partici-
pants generated a conclusion for each syllogism. They pointed out
that, when the two premises are B–A and C–B, participants prefer
to generate a C–A type conclusion (that constitutes a figure 1 syl-
logism as a result, see Table A.1) to an A–C type conclusion (figure
4). Likewise, people prefer an A–C conclusion from A–B and B–C
premises (constituting a figure 10 syllogism in Table A.1, a logical
equivalent of figure 1) to a C–A conclusion (figure 40).

In evaluating how well a model predicts the figural effect, it is
not obvious what measure should be used, despite the agreement
on the conclusion that figure 1 is generally easier than figure 4. I
examined how the model predicts the figural effect in two cases:
using 19 valid syllogisms, following Erickson (1974), and using
all 64 syllogisms. The difference in correct solution rate between
figures 1 and 4 was examined as the two model parameters, x
and c, varied. In the case of 19 valid syllogisms, the difference
was always positive for any combination of parameters, indicating
a stable figural effect whereby a figure 1 syllogism is always easier
than a figure 4. The results from the complete set of 64 syllogisms
are shown in Fig. 13. This figure shows that the figural effect is
almost always observed, except for some special cases where c is
approximately 0.5 and x is large. Given that c is almost always sup-
posed to be high, as we have seen above, the model predictions are
generally compatible with the existing data.
4.7. Working memory capacity

One of the distinctive features of the probabilistic representa-
tion model compared with other process models, including the
mental models theory, is that it explicitly incorporates the assump-
tion of working memory capacity. Working memory is considered
to be an important component of cognitive processes
(e.g., Baddeley, 2007), especially regarding conscious processing
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including syllogistic reasoning, and working memory capacity
must have some implications for reasoning processes. Therefore,
it is important to evaluate the consistency of the model assump-
tions with the current findings on working memory.

Thus far, although I have hard-coded the sample size in SMM to
be seven, this is not an intrinsic restriction of the model. I con-
ducted a series of model fittings in which the sample size varied
from 4 to 12 using the same dataset as in the conversion case in
Section 4.5. As shown in Fig. 14, a sample size of six provided the
best fit when evaluated based on RMSD, whereas it was seven
based on Pearson’s r. This result suggests that people sample six
or seven instances in working memory to derive a conclusion to
a syllogism. Because the size accords with Miller’s (1956) magical
number (i.e., seven plus or minus two), the result is supportive of
probabilistic representation theory, which provides a model of syl-
logistic reasoning performed by people with a certain limitation of
working memory capacity.

This evidence, however, may be controversial. Halford, Cowan,
and Andrews (2007) claimed that the limit of working memory
capacity, which is actually three to five chunks (wittily described
as the ‘‘magical mystery four” by Cowan, 2010), reflects our capac-
ity for attention in reasoning and restricts the relational represen-
tations that enable inferences to be made. Fig. 14 indicates that the
fit of the model to the data greatly deteriorates when the number
of samples is four, a pattern that does not seem to agree with
recent findings on working memory capacity.

There are two ways to resolve this apparent dissociation. First,
the capacity for processing can be dependent on the tasks to be
performed. There may be a critical difference in cognitive load
between recognizing a target as an instance of logical status (i.e.,
one SMM instance) and the process of a working memory task, in
which people memorize each target precisely. There is also con-
vincing evidence that the number of seven samples remains mean-
ingful as our processing capacity when making decisions between
many options (Iyengar & Lepper, 2000) or detecting a correlation
between two events from covariation information (Kareev, 2000).

Second, the number of samples in SMM may not precisely cor-
respond to the pure capacity of working memory. Cowan (2000, p.
112) pointed out that, while ‘‘the number seven estimates a com-
monly obtained, compound capacity limit,” there is a possibility
that ‘‘this number reflects a certain reasonable degree of chunk-
ing.” The same thing might be true for SMM samples, as shown
below.
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Fig. 14. The goodness-of-fit of the probabilistic representation model to data as a
function of working memory capacity. Working memory capacity is assumed to be
the number of samples in the SMM. Data for model fitting were taken from eight
experiments in the literature, as introduced in Meta-Analysis 2.
The SMM sample distributes over the PPM, which basically con-
sists of eight subsets corresponding to each logical status gener-
ated by the combination of three terms, S, M, and P. As this
distribution is based on a random process, some samples can drop
to the same PPM area; this actually happens in most cases. For
example, in the case of AA1, the PPM of this syllogism does not
have areas 2, 3, 4, and 6 (see Table 2 for the correspondence
between the area number and the logical status), and only P1, P5,
P7, and P8 can have a non-zero probability. If we use the best esti-
mates obtained by Meta-Analysis 2 (i.e., x = 0.473 and c = 0.914),
P1 = 0.43, P5 = 0.04, P7 = 0.05, and P8 = 0.48. The seven samples are
thus dispersed throughout the four PPM subsets of AA1, but in
reality, only two or three areas are generally occupied, especially
when some probabilities are very small (i.e., P5 and P7 in this exam-
ple). If we regard samples in the same area as being subject to
chunking, seven samples do not in turn consume as much capacity
as seven chunks. This was examined by the following simulation.

In the simulation, I examined the number of areas of a PPM
occupied by seven SMM samples, which is assumed to be the
capacity of working memory. The number of areas occupied by
seven SMM samples was counted for each of 16 PPMs, with the
model’s parameters fixed to the best-fit estimates from Meta-
Analysis 2. This sampling process was iterated 100,000 times,
and the values were averaged by PPM. As a result, the total mean
of the 16 PPMs (Fig. 6) was 3.10 (the minimum was 2.46 for AA2,
AE13, and EA32, while the maximum was 4.84 for II). This analysis
indicates that the model’s behavior is also consistent with the find-
ings of recent working memory studies.

4.8. Summary

In the literature, there are a few psychological theories of syllo-
gistic reasoning that provide detailed quantitative predictions of
people’s performance in terms of a distribution of the proportion
of answers. When such available models are compared with the
probabilistic representation model in terms of their fit to the data,
the latter model was always superior to the others, as shown in
Meta-Analysis 1 (Section 4.1). Notably, the model also gave the
best fit to the results reported by Guyote and Sternberg (1981) that
have been almost ignored by previous meta-analysis studies,
despite being the first quantitative model of syllogistic reasoning.
When several signal models were compared simultaneously using
a unified comprehensive dataset in Meta-Analysis 2, none was bet-
ter than the probabilistic representation model (Section 4.3).

The probabilistic representation model does not only show a
good fit to data. An obvious advantage of the model is that it is
based on a theory of representation, and the model’s parameters
define reasoners’ internal states in terms of representations. In this
regard, it is distinctive among other probabilistic models. The
model is an extension of Chapman and Chapman’s (1959) conver-
sion theory, but an elaboration allows the model to make novel
predictions (Section 4.5), which are examined in the experiments
described in the next section. The model also accounts for the
effect of working memory capacity (Section 4.7).

The probabilistic representation theory is an integration of the
probability heuristic model and the mental models theory, inherit-
ing advantages from both theories. It also incorporates some
accounts of syllogistic reasoning based on Gricean interpretation
and p-validity. As a result, it not only quantitatively fits the data,
but also qualitatively accounts for well-known phenomena in the
literature, including immediate inferences (Section 4.4), illicit con-
version (Section 4.5), and the figural effect (Section 4.6). Most
importantly, it accounts for the background mechanisms of syllo-
gistic reasoning. A psychological theory requires more than precise
predictions. Without the internal mechanism, the theory is not
able to make new predictions in other situations. Probabilistic
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representation theory is a theory at a representational level that
handles mental mechanisms and accounts for data both quantita-
tively and qualitatively.
5. Experiments on the content effect

One of the merits of theories based on internal representation is
that the effect of content is explained in terms of representational
change. Probabilistic representation theory, in particular, expresses
the change in internal representation by parameter values. Two
experiments were conducted to examine the difference in the pre-
dictive powers of the models compared in the last section.
Although the effect of content can be diverse, I concentrate here
on an aspect of syllogistic reasoning concerning symmetry infer-
ence, an issue of particular interest for the current theory.

According to the set-size balancing hypothesis (Hattori &
Nishida, 2009; Hattori & Oaksford, 2007), people assume that
two target events are almost equal in their set sizes, unless there
is effective information to override this belief. The coverage param-
eter c, which is responsible for the balancing assumption, only
affects A-statements in syllogisms, and the degree of balance
affects only syllogistic reasoning that includes A-statements. The
difference in performance among four figures sharpens as the
value of c decreases, because the degree of asymmetry between
terms in an A-statement moves from complete symmetry (‘‘All X
are Y, and all Y are X” when c = 1) toward greater asymmetry
(P(Y|X)? 0 when c? 0). Thus, probabilistic representation theory
predicts that, if we somehow have people jettison the balancing
principle, the syllogistic figure has a greater effect on the syllogistic
reasoning performance. Such an influence of the figure is called an
inclusion effect hereafter, and is a specific aspect of the figural
effect, which is a somewhat ambiguous term (as mentioned in
Section 4.6).

The predictions of the current model contrast impressively with
the probability heuristics model, which does not predict any inclu-
sion effect: no difference among figures for traditional syllogistic
tasks with choice options. Although it is not necessarily easy to
consciously inhibit the default response, it is known to be defeasi-
ble with the help of general knowledge stored in long-term mem-
ory, as shown by Hattori and Nishida (2009). Politzer (2011)
proposed a similar idea of natural syllogism that falls in line with
this. Applying this idea here, I examined whether the inclusion
effect could be altered by a semantic manipulation whereby the
relationship between two terms in an A-statement agrees with
their logical relationship in terms of inclusion.
5.1. Experiment 1

5.1.1. Method
A total of 89 undergraduates from Ritsumeikan University (55

female and 34 male, age: M = 20.2, SD = 1.0) took part in the exper-
iment to fulfill a part of their course requirements. Of these, one
person did not follow the instructions correctly, and so their data
were excluded.

In this experiment, only syllogisms that can have a greater
inclusion effect were used as tasks in order to lighten the burden
on participants and obtain clearer results. The potential of each
type of syllogism (AA, AI, etc.) to exhibit the inclusion effect was
defined by the average standard deviation of the proportion of each
answer (A, I, E, O, and N) in all figures. Altering the value of c from
0.1 to 0.9 in steps of 0.1 (other parameter values were fixed at the
best-fit estimates derived from Meta-Analysis 2), the index values
were calculated and then averaged for each type of syllogism. As a
result, five types of syllogism (AA, AI, IA, AE, and EA, in descending
order) were chosen. Among these, 12 syllogisms (AA1, AA2, AA3,
AA4, AI1, AI2, IA1, IA3, AE1, AE2, EA1, and EA3) that are different
in the PPM were selected as tasks.

The terms used in each syllogism were carefully selected to nul-
lify people’s balancing assumption. Three levels of probability (low,
middle, and high) were assumed. The ‘‘blood type Ph�” (low) was
introduced as a fictitious category intended to remind people of the
very rare actual blood type Rh�. The ‘‘pollen allergy” (mid) is actu-
ally quite common in Japan, but is no doubt less common than
‘‘having a cough” (high). This kind of general knowledge about
prevalence was an attempt to override the default probabilistic
representation and construct one that is consistent with the logical
structure of a given task. For example, the AA1 syllogism was
stated in a form with two premises, ‘‘All who have a pollen allergy
(M-mid) have a cough (P-high)” and ‘‘All who have blood type
Ph� (S-low) have a pollen allergy (M-mid).” Details of the material
are shown in Appendix B. All the syllogistic tasks were printed in a
booklet in a randomized order, and two versions (in which the
order is reversed) were prepared and randomly assigned to the
participants.

5.1.2. Results and discussion
The models were fitted to the data in the same way as in Meta-

Analysis 2. As we can see from Table 6, the AIC again indicates that
the probabilistic representation model (8.08) performed best,
followed by the probability heuristics model (8.17) and the
p-mental model (14.15). The RMSD and Pearson’s correlation
coefficient are also listed in Table 6. These are similar for the prob-
abilistic representation model and probability heuristics model,
because both can predict the data with only three parameters
(as the data are from a part of all 64 syllogisms), whereas the
p-mental model requires all six parameters. Generally, the results
are consistent with those based on AIC.

The best-fit parameter estimates are given in Table 5. Note that
the estimate of the coverage parameter, which is relevant to the
balancing principle, is c = 0.805. The mean estimate of this param-
eter value in standard tasks from Meta-Analysis 2 was 0.912,
which is significantly larger than in the current experiment, t(7)
= 3.72, p < 0.01. This result indicates both the success of the exper-
imental manipulation and the model’s descriptive validity. I will
discuss the degree of reduction in the value of c in Section 5.3.

5.2. Experiment 2

In this experiment, Experiment 1 was replicated with a wider
variation of syllogisms.

5.2.1. Method
I used the same method as in Experiment 1, except for the fol-

lowing. Fifty undergraduate students from Kanazawa University
(35 female and 15 male, age:M = 20.8, SD = 1.0) participated in this
experiment, which was conducted as part of classwork in an ele-
mentary cognitive psychology class, albeit participation was on a
voluntary basis. The tasks considered 32 out of 64 syllogisms: all
syllogisms that can have the inclusion effect (i.e., syllogisms that
include at least one A-statement in their premises) were selected,
and II1, 2, 3, and 4 were also included. The tasks were conducted on
a computer.

5.2.2. Results and discussion
Participants’ responses to syllogisms IA2, II1, II2, and II4 were

not properly recorded because of a bug in the computer program,
and the results of these tasks were excluded from the analysis.

Once again, the models ranked the same in terms of the AIC (see
Table 6): probabilistic representation model (10.374), probability
heuristics model (10.422), and p-mental model (14.353). The
estimated value of c was 0.779, i.e., the mean estimate of this



Table 6
Results of experiments 1 and 2.

Experiment 1 Experiment 2

Type PRM PHM pMM PRM PHM pMM

d r d r d r d r d r d r

AA1 0.097 0.977 0.159 0.969 0.067 1.000 0.134 0.963 0.234 0.914 0.074 1.000
AA2 0.202 0.382 0.273 0.191 0.219 0.330 0.225 0.299 0.252 0.226 0.213 0.328
AA3 0.079 0.916 0.172 0.716 0.267 0.540 0.061 0.938 0.078 0.926 0.243 0.699

AA4 0.118 0.898 0.217 0.471 0.301 0.330 0.115 0.884 0.167 0.576 0.313 0.320

AI1 0.083 0.977 0.115 0.973 0.024 0.999 0.111 0.959 0.176 0.923 0.021 0.999
AI2 0.066 0.968 0.069 0.969 0.045 0.975 0.039 0.985 0.036 0.983 0.058 0.974

AI3 – – – – – – 0.090 0.943 0.112 0.907 0.088 0.985
AI4 – – – – – – 0.031 0.989 0.025 0.996 0.083 0.952

IA1 0.034 0.997 0.026 0.998 0.086 0.971 0.033 0.988 0.039 0.985 0.074 0.974

IA3 0.057 0.982 0.074 0.985 0.048 0.989 0.074 0.972 0.132 0.945 0.039 0.995
IA4 – – – – – – 0.044 0.993 0.063 0.975 0.112 0.969
AE1 0.129 0.800 0.135 0.847 0.054 0.959 0.080 0.912 0.070 0.934 0.043 0.987
AE2 0.040 0.993 0.096 0.986 0.032 0.996 0.103 0.972 0.204 0.920 0.047 0.999
AE3 – – – – – – 0.121 0.788 0.125 0.778 0.036 0.971
AE4 – – – – – – 0.074 0.980 0.176 0.925 0.033 0.996
EA1 0.041 0.992 0.086 0.986 0.027 0.996 0.119 0.957 0.209 0.907 0.047 0.999
EA2 – – – – – – 0.061 0.985 0.165 0.930 0.035 0.995
EA3 0.138 0.809 0.179 0.717 0.054 0.916 0.097 0.883 0.123 0.784 0.084 0.835

EA4 – – – – – – 0.089 0.902 0.083 0.921 0.024 0.987
AO1 – – – – – – 0.069 0.952 0.038 0.982 0.100 0.872

AO2 – – – – – – 0.158 0.852 0.067 0.944 0.104 0.794

AO3 – – – – – – 0.232 0.322 0.196 0.442 0.208 0.170

AO4 – – – – – – 0.204 0.676 0.109 0.833 0.130 0.653

OA1 – – – – – – 0.050 0.974 0.018 0.999 0.090 0.930

OA2 – – – – – – 0.221 0.358 0.187 0.461 0.181 0.317

OA3 – – – – – – 0.194 0.712 0.114 0.845 0.166 0.620

OA4 – – – – – – 0.285 0.191 0.190 0.411 0.191 0.164

II3 – – – – – – 0.034 0.993 0.040 0.987 0.100 0.856

All 0.090 0.959 0.133 0.942 0.102 0.976 0.113 0.931 0.122 0.923 0.105 0.978

AIC 8.080 8.170 14.146 10.374 10.422 14.353

Note: The top row indicates models and the ID indicates studies (see, note of Table 4). Underlined numbers are the index values that indicate the best fit in each experiment.
d: root mean square deviation (RMSD), r: Pearson’s correlation coefficient.
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parameter in standard tasks from Meta-Analysis 2 was again sig-
nificantly larger than that from the current experiment, t(7)
= 4.622, p < 0.01. As for Experiment 1, the results are supportive
of the probabilistic representation theory.

5.3. Discussion

The results of these two experiments clearly show that people’s
representational change, which was manipulated by task materials
in accordance with the set-size balancing hypothesis, alters their
syllogistic reasoning. The variation in performance is predicted
by the model as an adjustment of one parameter. This is the first
demonstration of the inclusion effect, which is a clarified version
of the figural effect.

One might, however, wonder at the degree of reductions in the
value of c: estimated values did not reach as low as 0.5, but were
around 0.8. The reason for this is not obvious, but there are several
possibilities. First, it is possible that people’s behavior is usually
more conservative than expected. Similar results were actually
obtained from previous studies that manipulated probability infor-
mation in the Wason selection task. In experiments by Oaksford,
Chater, and Grainger (1999), probability information was not suffi-
ciently effective on people’s performance. When Hattori (2002)
estimated the probabilities of events that people conceive in the
task from their performances, the results were conservative,
although the trends pointed in the predicted direction. As these
authors suggested, if a certain default heuristic is almost always
useful in daily life, it may have become a hard-wired default
option. Not being excessively sensitive to case-dependent informa-
tion can be adaptive in the environment.

Second, it is also possible that some particular property of the
stimulus words is responsible for manipulating people’s proba-
bilistic representations. In Hattori and Nishida’s (2009) experi-
ments, statements such as ‘‘A patient who is infected with X
syndrome has an 80% chance of having a cough” drastically altered
people’s performance in probability judgment tasks. In this case, X
syndrome and a cough are a disease and a symptom, and they have
a clear causal relationship. While some statements used as stimuli
in Experiments 1 and 2 can be regarded as causal rules, others such
as ‘‘Some optimists have a pollen allergy” cannot. If probability
information is more effective in the context of causality, the stim-
ulus set might have made the results ambiguous.

Apart from these issues, the model itself might be too simple.
Some assumptions, especially that P(M) is the same in all syllo-
gisms, might be too strong. The validity of each assumption should
be carefully examined in future studies, and the model should be
refined continuously.
6. Syllogisms with generalized quantifiers

Developments in the psychology of reasoning over recent dec-
ades (e.g., Evans & Over, 2004; Oaksford & Chater, 2007) have made
the operational distinction between deduction and induction
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ambiguous (but, see, Rips, 2001). The traditional theoretical gap in
philosophy between deductive and inductive reasoning has been
bridged by several authors using probabilistic tools (e.g., Lassiter
& Goodman, 2015; Oaksford & Chater, 2001; Tenenbaum, Kemp,
Griffiths, & Goodman, 2011). In this regard, among several compre-
hensive psychological theories of syllogism, Chater and Oaksford’s
(1999) probability heuristics model has the distinctive advantage
of dealing with generalized quantifiers (i.e., most and few), which
are not regarded as being deductive from a logical point of view.
Here, I extend the probabilistic representation model to deal with
non-logical quantifiers, and compare it with the probability heuris-
tics model.

6.1. Extension of the model

6.1.1. PPM
Although the quantifiers most (M) and few (F) are considered to

express basically the same ‘‘logical” information as some (I), they
have additional information. Therefore, I assume the Euler circle
representing M and F to be D3 in Fig. 3, whereas the probability
information for each of them includes an extra parameter (see
Table 7). We can assume some kind of continuum from ‘‘No X
are Y” (E) to ‘‘All X are Y” (A): E—F—I—M—A. Correspondingly,
parametersm (i.e.,manyness) and f (i.e., fewness) define the degree
Table 7
Generalized Quantifiers Expressed by Probability Parameters.

No X are Y Few X are Y

YX X Y

f : f ¼ 1 0 < f < 1
m: � �
PðX;YÞ: PðX;YÞ ¼ 0 PðX;YÞ ¼ �f x2

Note. Probabilities of X and Y are expressed by a parameter x (i.e., PðXÞ ¼ PðYÞ ¼ x), and p
text in detail). Here, �m, �f , �x, and xþ stand for 1�m, 1� f , 1� x, and xþm�x, respectively

Table 8
Probabilities of all areas in each PPM with generalized quantifiers.

No Name Type P(S) P(P)

5b AM13 AM1,3 x y
5c AF13 AF1,3 x y

6b AM24 AM2,4 x cx
6c AF24 AF2,4 x cx

7b MA12 MA1,2 cx x
7c FA12 FA1,2 cx x

8b MA34 MA3,4 y x
8c FA34 FA3,4 y x

13b ME ME⁄ x x
13c FE FE⁄ x x

14b EM EM⁄ x x
14c EF EF⁄ x x

16b MM MM⁄ x x

16c FF FF⁄ x x

16d MF MF⁄ x x

16e FM FM⁄ x x

16f MI MI⁄; MO⁄ x x
16g IM IM⁄; OM⁄ x x
16h FI FI⁄; FO⁄ x x

16i IF IF⁄;OF⁄ x x

Note. Parameters m and f indicate the degrees ofmanyness and fewness, respectively (see
respectively. For �x and y, see the note for Table 2.
of overlap between two Euler circles for two terms in a statement.
As shown in Table 7, it is assumed that m runs from 0 (I) to 1 (A) in
the case of M, while f runs from 0 (I) to 1 (E) in the case of F. A set of
PPMs for syllogisms with generalized quantifiers is the same as the
traditional syllogisms shown in Fig. 6 (e.g., AI13 = AM13, etc.),
although the probability assignment should be expanded for syllo-
gisms including M or F, as given in Table 8.

6.1.2. Generating a conclusion and its probability
The test order for the consistency of candidate conclusions is A,

M, F, I, E, and O. This is based on the result that, under the rarity of
events assumption, the order of informativeness is I(A) > I(M) > I
(F) > I(I) > I(E) > I(O), as analyzed by Chater and Oaksford (1999).
Additional criteria for testing the consistency of an SMM, and the
theoretical probability that each conclusion is not inconsistent
with the SMM, are as follows:

An M-conclusion is derived if there is at least one individual
that is both S and P. The theoretical probability that the M-
conclusion is consistent with an SMM is ð1� P1 � P3Þn.

An F-conclusion is derived if there is at least one individual that
is not both S and P. The theoretical probability that the F-
conclusion is consistent with an SMM is 1� ðP1 þ P3Þn. New
semi-fixed parameters for the degree of confidence in a conclusion
with M or F, as in the cases of A, I, E, and O, are also introduced.
Some X are Y Most X are Y (All X are Y)

X Y YX X,Y

f ¼ 0 � �
m ¼ 0 0 < m < 1 m ¼ 1
PðX;YÞ ¼ x2 PðX;YÞ ¼ xxþ PðX;YÞ ¼ x

arameters m and f indicate the degrees of manyness and fewness, respectively (see
.

1 2 3 5

PðS;M; PÞ PðS;M; P
�
Þ PðS;M

�
; PÞ PðS

�
;M; PÞ

xxþ 0 �c �mx�x �mx�x
�f x2 0 �cx�x x�xþ

cxxþ �cxxþ 0 c �mx�x

c�f x2 �c�f x2 0 cx�xþ

cxxþ c �mx�x 0 �cxxþ

c�f x2 cx�xþ 0 c�f x2

xxþ �mx�x �c �mx�x 0
�f x2 x�xþ �cx�x 0
0 0 �mx2 xxþ

0 0 x2�xþ=�x �f x2

0 xxþ �mx2 0
0 �f x2 x2�xþ=�x 0

xðxþÞ2 �mx�xxþ �m2x2�x �mx�xxþ

�f 2x3 f�f x2 x2ð�xþÞ2=�x f�f x2

�f x2xþ �m�f x2�x �mx2ð�xþÞ x�xþxþ

�f x2xþ xxþ�xþ �mx2ð�xþÞ �m�f x2�x
x2xþ �mx2�x �mx2�x x�xxþ

x2xþ x�xxþ �mx2�x �mx2�x
�f x3 x2�xþ x2�xþ �f x2�x
�f x3 �f x2�x x2�xþ x2�xþ

text in detail). In this table, �m, �f , xþ , and �xþ , stand for 1�m, 1� f , xþm�x, and �xþ fx,
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6.2. Empirical tests: Meta-Analysis 3

The probabilistic representation model was compared with the
probability heuristics model using data from Chater and Oaksford’s
(1999) Experiments 1 (AMFO) and 2 (MFIE) in the same way as in
the previous evaluations. The fitness of the probabilistic represen-
tation model was inferior to that of the probability heuristics
model in both experiments: RMSDs were 0.152 vs. 0.106 (AMFO)
and 0.123 vs. 0.093 (MFIE); Pearson’s r values were 0.899 vs.
0.965 (AMFO) and 0.767 vs. 0.859 (MFIE). AICs were 28.0 vs. 10.5
(AMFO) and 24.5 vs. 10.2 (MFIE), indicating much worse scores
from the former, as it contains two more parameters than the
latter.

There are some points to be noted regarding the tasks used in
Chater and Oaksford’s (1999) experiments, which are different
from those used in traditional syllogistic experiments. In their
experiments, half of the premises in the task contained probabilis-
tic quantifiers (i.e.,most or few), which clearly indicate that the tar-
get statement is not to be logically considered. In fact, fewer
syllogisms have correct solutions from the logical point of view
(i.e., 13 and 12 in the AMFO and MFIE tasks, respectively) com-
pared with the traditional AIEO task (i.e., 19, see Appendix A). Such
settings might have encouraged participants to think in a different
way from ordinary syllogistic tasks. What is consistent with this
view is the suggestion by Rips (2001) that people have qualita-
tively distinct ways of evaluating deduction and induction: a
deductively correct argument is not an extreme form of an induc-
tively strong argument.

While the distinction between deductive and inductive reason-
ing is still controversial (e.g., Feeney, 2007), it is no doubt an
important issue for any current and future theories of syllogisms.
Some anomalies observed even in the results of Chater and
Oaksford (1999) might be relevant to this issue. In their Experi-
ment 1 with AMFO quantifiers, many more participants (68.75%)
selected the O-conclusion for syllogisms with OO-type premises
than in experiments with standard deductive AIEO quantifiers
(18.04%), a phenomenon that they called the global context effect.
Participants’ behavior changed in another way in their Experiment
2 with MFIE quantifiers: the selection trend was more ambiguous
in this experiment than others. The percentage of the most selected
conclusion types ranged from 25.0% to 75.0%, with an average of
39.53% (Table E1 in Chater & Oaksford, 1999). This rate seems to
be significantly lower than for standard tasks, where the range is
12.03–92.41% with an average of 47.44% according to their
Table C1. As a result, the fit of their model to the data is worse
(r = 0.65) than the AMFO data (r = 0.94) and standard data
(r = 0.90) according to their analyses. These phenomena seem to
fall outside the scope of any current theories, and may have some-
thing to do with people’s reasoning mode: deductive or inductive.

However, given that these results are from only two experi-
ments with relatively few participants (i.e., 20 for each), and that
the experiments were equipped with an insufficient set of syllo-
Table 9
Summary of the all empirical tests: AIC as an index of goodness-of-fit of the model.

PRM

Meta-Analysis 1: CO99-AIEO 17.9
Meta-Analysis 1: GS81 13.8
Meta-Analysis 2: Weighted average 19.5
Experiment 1 8.1
Experiment 2 10.4
Meta-Analysis 3: CO99-AMFO 28.0
Meta-Analysis 3: CO99-MFIE 18.6

Note: A smaller AIC score indicates better fitness. The top row indicates models and the
indicate Chater and Oaksford’s (1999) Meta-Analysis data using standard AIEO syllogism
from Guyote and Sternberg (1981).
gisms (i.e., only four out of six quantifiers, AMFIEO), the results
of the current model evaluation are not definitive on this issue.
In future, to construct a comprehensive model incorporating a pos-
sible distinction between deductive and inductive thinking modes
and different types of processes, the method of the current model
in deriving a conclusion including that based on a set of small sam-
ples in an SMM might require some elaboration.
7. General discussion

In this paper, I have proposed a model for syllogistic reasoning
based on probabilistic representations. Constructing a mental rep-
resentation based on individual elements that corresponds to a
‘‘probable” state of affairs, the model simulates a process to derive
the most informative ‘‘logical” conclusion. The model exhibited a
good fit to the available data, and its validity was confirmed.
Table 9 summarizes all the results of empirical tests so far for
the corresponding target models, picking up only AIC scores as a
representative index of goodness-of-fit. This study can be charac-
terized both as a true extension of the mental models theory that
enables the quantitative prediction of data for syllogistic reason-
ing, and also as an attempt to elaborate the probability heuristics
model at the algorithmic/representational level.

The results of parameter estimation for the coverage parameter
c suggest a previously unknown connection among various types of
reasoning and judgment. As c was estimated to be close to 1, S, M,
and P are considered to be almost identical in size in our mind. In
this relation, Hattori (2002) analyzed a version of information gain
models and found that people assume the probabilities of the ante-
cedent (p) and consequent (q) of a conditional ‘‘if p then q” in
Wason’s selection task to be almost equal. Similarly, Hattori and
Nishida (2009) presented evidence that an error known as the base
rate fallacy in probabilistic reasoning is caused by the balancing
principle, and that this error disappears when the principle is
blocked. Moreover, Hattori and Oaksford (2007) showed that a
‘‘fast and frugal” dual-factor heuristic embodying the principle is
instrumental in covariation detection as a fundamental step in cau-
sal induction between two arbitrary events. All of these results
indicate a particular aspect of general human cognition when peo-
ple recognize the uncertainty of the real world. The balancing prin-
ciple is a probabilistic interpretation of symmetry inference.
Various biases and errors that have been identified in different
areas of human thinking, including categorical and conditional
deduction, induction, and probability judgment, appear to be
unrelated to each other, but may be caused by a single common
characteristic called symmetry.

Finally, I look at the justification for a particular assumption of
the model. Random sampling, which is a mechanism for linking the
probabilistic representation and derivation of a logical conclusion,
can be questioned: is it simply an expedient mechanism for
obtaining an output that fits the data, or is it assumed to be
PHM pMM TCM

17.7 – –
– – 16.6

20.3 21.4 –
8.2 14.2 –

10.4 14.4 –
10.5 – –
10.2 – –

ID indicates studies (see, note of Table 4). CO99-AIEO, CO99-AMFO, and CO99-MFIE
s, data from Experiments 1 (AMFO) and 2 (MFIE), respectively. GS81 indicates data
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psychologically real. The answer here is both yes and no. It is unde-
niable that at least part of our mental processes involves intrinsic
fluctuations, and that a mechanism seen as a virtual random num-
ber generator is embodied in our minds (e.g., Glimcher, 2003). In
this sense, the random sampling process in the model can be
regarded as a model of a certain kind of psychological uncertainty.
On the other hand, it may be unlikely that a particular person can
be assumed to make a sample at ‘‘random,” in the proper sense of
the word, in the process of syllogistic reasoning. Rather, it would
be more realistic to consider the random sampling function to be
a sufficient model of reasoning performance of a certain group of
people rather than a particular person. Although unpredictable
uncertainty is surely involved in each individual’s reasoning pro-
cess, this may not be exactly the same as a purely random process.
However, if we combine the behavior of a certain number of peo-
ple, the global behavior is simulated by a random process with sat-
isfactory accuracy.
M – P
S – M
S – P

P – M
S – M
S – P

M – P
M – S
S – P

P – M
M – S
S – P

(1) (2) (3) (4)

S – M
M – P
S – P

S – M
P – M
S – P

M – S
M – P
S – P

M – S
P – M
S – P

(1’) (2’) (3’) (4’)

(I) Aristotelian Figures

(II) Exchanged Figures

Table A.1
Logical equivalence among various syllogistic figures.

Aristotelian Exchanged Converted Johnson-Laird’s

XY1/Z YX10/Z YX4/Z0 XY2JL/Z0 (XbaYcb/Zca)
XY2/Z YX20/Z YX2/Z0 XY3JL/Z0 (XabYcb/Zca)
XY3/Z YX30/Z YX3/Z0 XY4JL/Z0 (XbaYbc/Zca)
XY4/Z YX40/Z YX1/Z0 XY1JL/Z0 (XabYbc/Zca)
YX1/Z XY10/Z XY4/Z0 XY1JL/Z (XabYbc/Zac)
YX2/Z XY20/Z XY2/Z0 XY3JL/Z (XabYcb/Zac)
YX3/Z XY30/Z XY3/Z0 XY4JL/Z (XbaYbc/Zac)
YX4/Z XY40/Z XY1/Z0 XY2JL/Z (XbaYcb/Zac)

Note. Symbols (e.g., XY1/Z) consist of the moods of the first premise (X) and second
premise (Y), the figure (1), and the mood of the conclusion (Z). Figure numbers with
a prime (e.g., 10) indicate that the two premises are exchanged. Figure number with
a superscript symbol JL indicates Johnson-Laird’s original numbering system.
Conclusion symbols with a prime (i.e., Z0) indicate that the order of terms is con-
verted (i.e., P–S instead of S–P).
8. Conclusions

The current study has presented a novel model based on prob-
abilistic representations. The model was inspired by two preceding
ideas proposed decades ago: probabilistic inference (Chapman &
Chapman, 1959) and individual-based mental models (Johnson-
Laird & Steedman, 1978). The proposed model was also elaborated
using three concepts, some of which are relevant to previous the-
ories of syllogistic reasoning: minimal constraints, small samples,
and informativeness. The model exhibited a good fit to the data.
As a result, the model is a real integration of the two most repre-
sentative current theories, the mental model theory and the prob-
ability heuristic model (Chater & Oaksford, 1999). The most
important implication of this study is the model’s suggestion about
(1) the process of syllogistic reasoning and (2) its relevance to other
cognitive tasks or processes. The results suggest the procedural
validity of probabilistic approaches: people first construct an intu-
itive probabilistic representation corresponding to the typical state
of affairs described by the premises, and secondly, they construct
an individual-based model with a small number of elements
assuming minimal constraints on their logical relations. Thus, peo-
ple try to convey information efficiently with such representations.
The results also indicate that people observe the set-size balancing
principle in syllogisms, as in other cognitive tasks, including
hypothesis testing, causal induction, and probability judgment.
This means that deductive reasoning is not a special cognitive pro-
cess in the sense that it is exclusively modeled by logic, but is one
of the ecologically justified processes regulated by adaptively
rational probabilistic strategies.
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A – B
B – C
A – C
C – A

B – A
C – B
A – C
C – A

A – B
C – B
A – C
C – A

B – A
B – C
A – C
C – A

(1) (2) (3) (4)
(III) Johnson-Laird’s Figures

Fig. A.1. Syllogistic figures defined in traditional Aristotelian logic (I), modified
figures defined by exchanging the first and second premises from the Aristotelian
figures (II), and Johnson-Laird’s original figures (III). The former two fix the order of
terms in the conclusion, but the latter allows conclusions in any order.
Appendix A. Validity of syllogisms and syllogistic figures

In this paper, I presuppose that at least one individual of X exists
when asserting ‘‘All X are Y” (A) or ‘‘No X are Y” (E), following the
traditional Aristotelian manner (i.e., the existential presupposition).
If this presupposition is omitted, the number of syllogisms that
have a valid conclusion is 15 instead of 19, as AA3, AA4, EA3, and
EA4 do not have any valid conclusions. I adopt the Aristotelian cri-
terion here because it is more natural from a psychological point of
view, considering the fact that we would not usually say ‘‘All X are
Y” when we already know there are no X at all. Johnson-Laird and
Steedman (1978) regarded 27 syllogisms as having a valid conclu-
sion (p. 67), and Chater and Oaksford (1999) regarded 31 syllo-
gisms as being probabilistically valid (p. 203), because they
ignored the order of terms in the conclusion. For example, AE1
does not have a valid conclusion according to the Aristotelian cri-
terion, but if we are allowed to exchange S and P, ‘‘Some P are S”
(I) would be a valid conclusion, while ‘‘Some S are P” (I), which
has an allowed order, is not valid. Note, however, that this syllo-
gism is no longer regarded as a Fig. 1 syllogism, but is instead a
Fig. 4 syllogism (although the first and second premises are
exchanged). That is, this syllogism is to be regarded as essentially
EA4/O (Table A.1 shows XY1/Z0 = YX4/Z). I follow the traditional
taxonomy of syllogisms to avoid confusion. Table 1 lists all 64 syl-
logisms and their logical conclusions.

According to traditional Aristotelian logic, syllogistic figures are
defined as in Fig. A.1-I (including the conclusion, S and P). The
predicate of the conclusion (P) is in the first premise (called a
major term), and the subject of the conclusion (S) is in the second
premise (called a minor term). In a series of experimental papers,
Johnson-Laird classified syllogisms according to the location of
terms in premises, as shown in Fig. A.1-III. In fact, this caused con-
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fusion because it had an independent numbering system under the
same name of figures. This definition depends solely on the pre-
mises, and does not include the conclusion. As a consequence, cor-
respondence between Aristotelian and Johnson-Laird’s figures in
regard to logical equivalence varies according to the order of con-
clusion terms. For example, now consider Johnson-Laird’s Fig. 1
syllogism with A- and I-premises ‘‘All A are C” and ‘‘Some B are
C” (AabIbc) in the form of Fig. A.1-III-(1). If it has an I-conclusion
‘‘Some C are A” (AabIbc/Ica), it is identical to AI4/I [Fig. A.1-I-(4)]
(i.e., Fig. 4). However, if it has a conclusion ‘‘Some A are C”
(AabIbc/Iac), it is actually logically equivalent to IA1/I (Fig. 1), as
I now show. An AabIbc/Iac syllogism is identical to AI10/I
[Fig. A.1-II-(10)]. Here, a figure number with a prime (e.g., 10) indi-
cates that it is logically equivalent to that figure, but the order of
two premises has been exchanged, which means that AI10/I is log-
ically equivalent to IA1/I [Fig. A.1-I-(1)]. This kind of correspon-
dence is listed in Table A.1.
Appendix B. Materials used in Experiments 1 and 2

Three levels of probability, low, middle, and high, were assigned
to the syllogistic terms. Terms for low probability were ‘‘having
blood type Ph� (B)” and ‘‘be exposed to phi-rays (R).” Terms for
the middle probability were ‘‘having a pollen allergy (P),” ‘‘having
X syndrome (X),” and ‘‘being an optimist (O).” Terms for the high
probability were ‘‘having a cough (C)” and ‘‘having a stuffy nose
(N).” The correspondence between syllogisms and the terms used
is given in Table B.1.
Table B.1
Syllogistic terms used in experiments 1 and 2.

S M P

AA1⁄ L (B) M (P) H (C)
AA2⁄ L (B) M (P) L (F)
AA3⁄ H (C) M (P) H (N)
AA4⁄ H (C) M (P) L (B)
AI1⁄ M (X) M (P) H (C)
AI2⁄ M (X) M (P) L (B)
AI3 M (X) M (P) H (C)
AI4 M (X) M (P) L (B)
IA1⁄ L (B) M (P) M (X)
IA2 L (B) M (P) M (X)
IA3⁄ H (C) M (P) M (X)
IA4 H (C) M (P) M (X)
AE1⁄ M (X) M (P) H (C)
AE2⁄ M (X) M (P) L (B)
AE3 M (X) M (P) H (C)
AE4 M (X) M (P) L (B)
EA1⁄ L (B) M (P) M (X)
EA2 L (B) M (P) M (X)
EA3⁄ H (C) M (P) M (X)
EA4 H (C) M (P) M (X)
AO1 M (X) M (P) H (C)
AO2 M (X) M (P) L (B)
AO3 M (X) M (P) H (C)
AO4 M (X) M (P) L (B)
OA1 L (B) M (P) M (X)
OA2 L (B) M (P) M (X)
OA3 H (C) M (P) M (X)
OA4 H (C) M (P) M (X)
II1 M (O) M (P) M (X)
II2 M (O) M (P) M (X)
II3 M (O) M (P) M (X)
II4 M (O) M (P) M (X)

Note. Stimuli with an asterisk were used in Experiment 1, and all stimuli were used
in Experiment 2. L, M, and H indicate low, middle, and high probability, respec-
tively. B, F, P, X, O, C, and N in parentheses indicate ‘‘blood type Ph�,” ‘‘phi-ray
exposure,” ‘‘pollen allergy,” ‘‘X syndrome,” ‘‘optimist,” ‘‘having a cough,” and
‘‘having a stuffy nose,” respectively. See details in text.
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